BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 29314987)

  • 1. DEVELOPMENT, METAMORPHOSIS, AND SEASONAL ABUNDANCE OF EMBRYOS AND LARVAE OF THE ANTARCTIC SEA URCHIN STERECHINUS NEUMAYERI.
    Bosch I; Beauchamp KA; Steele ME; Pearse JS
    Biol Bull; 1987 Aug; 173(1):126-135. PubMed ID: 29314987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pollutant resilience in embryos of the Antarctic sea urchin Sterechinus neumayeri reflects maternal antioxidant status.
    Lister KN; Lamare MD; Burritt DJ
    Aquat Toxicol; 2015 Apr; 161():61-72. PubMed ID: 25667995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming.
    Byrne M; Ho MA; Koleits L; Price C; King CK; Virtue P; Tilbrook B; Lamare M
    Glob Chang Biol; 2013 Jul; 19(7):2264-75. PubMed ID: 23504957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cost of protein synthesis and energy allocation during development of antarctic sea urchin embryos and larvae.
    Pace DA; Manahan DT
    Biol Bull; 2007 Apr; 212(2):115-29. PubMed ID: 17438204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of the DNA repair enzyme, photolyase, in developmental tissues and larvae, and in response to ambient UV-R in the Antarctic sea urchin Sterechinus neumayeri.
    Isely N; Lamare M; Marshall C; Barker M
    Photochem Photobiol; 2009; 85(5):1168-76. PubMed ID: 19500294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosomal analysis of rapid rates of protein synthesis in the Antarctic sea urchin Sterechinus neumayeri.
    Pace DA; Maxson R; Manahan DT
    Biol Bull; 2010 Feb; 218(1):48-60. PubMed ID: 20203253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+/K+-ATPase activity during early development and growth of an Antarctic sea urchin.
    Leong PK; Manahan DT
    J Exp Biol; 1999 Aug; 202(Pt 15):2051-8. PubMed ID: 10393820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sea ice protects the embryos of the Antarctic sea urchin Sterechinus neumayeri from oxidative damage due to naturally enhanced levels of UV-B radiation.
    Lister KN; Lamare MD; Burritt DJ
    J Exp Biol; 2010 Jun; 213(11):1967-75. PubMed ID: 20472784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA photorepair in echinoid embryos: effects of temperature on repair rate in Antarctic and non-Antarctic species.
    Lamare MD; Barker MF; Lesser MP; Marshall C
    J Exp Biol; 2006 Dec; 209(Pt 24):5017-28. PubMed ID: 17142690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benthic responses to an Antarctic regime shift: food particle size and recruitment biology.
    Dayton PK; Jarrell SC; Kim S; Ed Parnell P; Thrush SF; Hammerstrom K; Leichter JJ
    Ecol Appl; 2019 Jan; 29(1):e01823. PubMed ID: 30601593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature and Embryonic Development in Relation to Spawning and Field Occurrence of Larvae of Three Antarctic Echinoderms.
    Stanwell-Smith D; Peck LS
    Biol Bull; 1998 Feb; 194(1):44-52. PubMed ID: 28574786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the Antarctic sea urchin (Sterechinus neumayeri) transcriptome and mitogenome: a molecular resource for phylogenetics, ecophysiology and global change biology.
    Dilly GF; Gaitán-Espitia JD; Hofmann GE
    Mol Ecol Resour; 2015 Mar; 15(2):425-36. PubMed ID: 25143045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth attenuation with developmental schedule progression in embryos and early larvae of Sterechinus neumayeri raised under elevated CO2.
    Yu PC; Sewell MA; Matson PG; Rivest EB; Kapsenberg L; Hofmann GE
    PLoS One; 2013; 8(1):e52448. PubMed ID: 23300974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ocean warming and acidification on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations.
    Ho MA; Price C; King CK; Virtue P; Byrne M
    Mar Environ Res; 2013 Sep; 90():136-41. PubMed ID: 23948149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delta13C and delta15N shifts in benthic invertebrates exposed to sewage from McMurdo Station, Antarctica.
    Conlan KE; Rau GH; Kvitek RG
    Mar Pollut Bull; 2006 Dec; 52(12):1695-707. PubMed ID: 17046028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acclimation of the Antarctic sea urchin Sterechinus neumayeri to warmer temperatures involves a modulation of cellular machinery.
    Détrée C; Navarro JM; Figueroa A; Cardenas L
    Mar Environ Res; 2023 Jun; 188():105979. PubMed ID: 37099993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy Metabolism and Amino Acid Transport During Early Development of Antarctic and Temperate Echinoderms.
    Shilling FM; Manahan DT
    Biol Bull; 1994 Dec; 187(3):398-407. PubMed ID: 29281399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity of hatching and the duration of planktonic development in marine invertebrates.
    Oyarzun FX; Strathmann RR
    Integr Comp Biol; 2011 Jul; 51(1):81-90. PubMed ID: 21576120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EARLY LIFE-HISTORY OF MELAMPUS AND THE SIGNIFICANCE OF SEMILUNAR SYNCHRONY.
    Russell-Hunter WD; Apley ML; Hunter RD
    Biol Bull; 1972 Dec; 143(3):623-656. PubMed ID: 28368698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relative influence of temperature and food on the metabolism of a marine invertebrate.
    Brockington S; Clarke A
    J Exp Mar Biol Ecol; 2001 Mar; 258(1):87-99. PubMed ID: 11239627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.