BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 29315225)

  • 1. FM19G11 and Ependymal Progenitor/Stem Cell Combinatory Treatment Enhances Neuronal Preservation and Oligodendrogenesis after Severe Spinal Cord Injury.
    Alastrue-Agudo A; Rodriguez-Jimenez FJ; Mocholi EL; De Giorgio F; Erceg S; Moreno-Manzano V
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29315225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation.
    Rodriguez-Jimenez FJ; Alastrue-Agudo A; Stojkovic M; Erceg S; Moreno-Manzano V
    Int J Mol Sci; 2015 Nov; 16(11):26608-18. PubMed ID: 26561800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activated spinal cord ependymal stem cells rescue neurological function.
    Moreno-Manzano V; Rodríguez-Jiménez FJ; García-Roselló M; Laínez S; Erceg S; Calvo MT; Ronaghi M; Lloret M; Planells-Cases R; Sánchez-Puelles JM; Stojkovic M
    Stem Cells; 2009 Mar; 27(3):733-43. PubMed ID: 19259940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FM19G11 favors spinal cord injury regeneration and stem cell self-renewal by mitochondrial uncoupling and glucose metabolism induction.
    Rodríguez-Jimnez FJ; Alastrue-Agudo A; Erceg S; Stojkovic M; Moreno-Manzano V
    Stem Cells; 2012 Oct; 30(10):2221-33. PubMed ID: 22865656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells.
    Rodriguez-Jimenez FJ; Alastrue A; Stojkovic M; Erceg S; Moreno-Manzano V
    Cell Tissue Res; 2016 Aug; 365(2):295-307. PubMed ID: 27221278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purinergic Receptors in Spinal Cord-Derived Ependymal Stem/Progenitor Cells and Their Potential Role in Cell-Based Therapy for Spinal Cord Injury.
    Gómez-Villafuertes R; Rodríguez-Jiménez FJ; Alastrue-Agudo A; Stojkovic M; Miras-Portugal MT; Moreno-Manzano V
    Cell Transplant; 2015; 24(8):1493-509. PubMed ID: 25198194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methacrylate-endcapped caprolactone and FM19G11 provide a proper niche for spinal cord-derived neural cells.
    Valdes-Sánchez T; Rodriguez-Jimenez FJ; García-Cruz DM; Escobar-Ivirico JL; Alastrue-Agudo A; Erceg S; Monleón M; Moreno-Manzano V
    J Tissue Eng Regen Med; 2015 Jun; 9(6):734-9. PubMed ID: 23533014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Administration of low dose estrogen attenuates persistent inflammation, promotes angiogenesis, and improves locomotor function following chronic spinal cord injury in rats.
    Samantaray S; Das A; Matzelle DC; Yu SP; Wei L; Varma A; Ray SK; Banik NL
    J Neurochem; 2016 May; 137(4):604-17. PubMed ID: 26998684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury.
    Yahata K; Kanno H; Ozawa H; Yamaya S; Tateda S; Ito K; Shimokawa H; Itoi E
    J Neurosurg Spine; 2016 Dec; 25(6):745-755. PubMed ID: 27367940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of glial transplantation on functional recovery following acute spinal cord injury.
    Lee KH; Yoon DH; Park YG; Lee BH
    J Neurotrauma; 2005 May; 22(5):575-89. PubMed ID: 15892602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG.
    Povysheva T; Shmarov M; Logunov D; Naroditsky B; Shulman I; Ogurcov S; Kolesnikov P; Islamov R; Chelyshev Y
    J Neurosurg Spine; 2017 Jul; 27(1):105-115. PubMed ID: 28452633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrathecal administration of epidermal growth factor and fibroblast growth factor 2 promotes ependymal proliferation and functional recovery after spinal cord injury in adult rats.
    Kojima A; Tator CH
    J Neurotrauma; 2002 Feb; 19(2):223-38. PubMed ID: 11893024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dysregulation of the neuregulin-1-ErbB network modulates endogenous oligodendrocyte differentiation and preservation after spinal cord injury.
    Gauthier MK; Kosciuczyk K; Tapley L; Karimi-Abdolrezaee S
    Eur J Neurosci; 2013 Sep; 38(5):2693-715. PubMed ID: 23758598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembling peptides optimize the post-traumatic milieu and synergistically enhance the effects of neural stem cell therapy after cervical spinal cord injury.
    Zweckberger K; Ahuja CS; Liu Y; Wang J; Fehlings MG
    Acta Biomater; 2016 Sep; 42():77-89. PubMed ID: 27296842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined polymer-curcumin conjugate and ependymal progenitor/stem cell treatment enhances spinal cord injury functional recovery.
    Requejo-Aguilar R; Alastrue-Agudo A; Cases-Villar M; Lopez-Mocholi E; England R; Vicent MJ; Moreno-Manzano V
    Biomaterials; 2017 Jan; 113():18-30. PubMed ID: 27810639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oscillating field stimulation promotes spinal cord remyelination by inducing differentiation of oligodendrocyte precursor cells after spinal cord injury.
    Zhang C; Zhang G; Rong W; Wang A; Wu C; Huo X
    Biomed Mater Eng; 2014; 24(6):3629-36. PubMed ID: 25227077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved differentiation of oligodendrocyte precursor cells and neurological function after spinal cord injury in rats by oscillating field stimulation.
    Jing JH; Qian J; Zhu N; Chou WB; Huang XJ
    Neuroscience; 2015 Sep; 303():346-51. PubMed ID: 26166729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplantation of Mesenchymal Stem Cells for Acute Spinal Cord Injury in Rats: Comparative Study between Intralesional Injection and Scaffold Based Transplantation.
    Kim YC; Kim YH; Kim JW; Ha KY
    J Korean Med Sci; 2016 Sep; 31(9):1373-82. PubMed ID: 27510379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted Inhibition of Leucine-Rich Repeat and Immunoglobulin Domain-Containing Protein 1 in Transplanted Neural Stem Cells Promotes Neuronal Differentiation and Functional Recovery in Rats Subjected to Spinal Cord Injury.
    Chen N; Cen JS; Wang J; Qin G; Long L; Wang L; Wei F; Xiang Q; Deng DY; Wan Y
    Crit Care Med; 2016 Mar; 44(3):e146-57. PubMed ID: 26491860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.