These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 29315395)
21. Use of real-time PCR to discriminate parasitic and saprophagous behaviour by nematophagous fungi. Pathak E; El-Borai FE; Campos-Herrera R; Johnson EG; Stuart RJ; Graham JH; Duncan LW Fungal Biol; 2012 May; 116(5):563-73. PubMed ID: 22559917 [TBL] [Abstract][Full Text] [Related]
22. Analysis of the complete mitochondrial genome of Pochonia chlamydosporia suggests a close relationship to the invertebrate-pathogenic fungi in Hypocreales. Lin R; Liu C; Shen B; Bai M; Ling J; Chen G; Mao Z; Cheng X; Xie B BMC Microbiol; 2015 Jan; 15():5. PubMed ID: 25636983 [TBL] [Abstract][Full Text] [Related]
24. Fungi-Nematode Interactions: Diversity, Ecology, and Biocontrol Prospects in Agriculture. Zhang Y; Li S; Li H; Wang R; Zhang KQ; Xu J J Fungi (Basel); 2020 Oct; 6(4):. PubMed ID: 33020457 [TBL] [Abstract][Full Text] [Related]
25. Phylogenetic analyses reveal molecular signatures associated with functional divergence among Subtilisin like Serine Proteases are linked to lifestyle transitions in Hypocreales. Varshney D; Jaiswar A; Adholeya A; Prasad P BMC Evol Biol; 2016 Oct; 16(1):220. PubMed ID: 27756202 [TBL] [Abstract][Full Text] [Related]
26. Evolution of parasitism genes in the plant parasitic nematodes. Dayi M Sci Rep; 2024 Feb; 14(1):3733. PubMed ID: 38355886 [TBL] [Abstract][Full Text] [Related]
27. Biocontrol: fungi as nematode control agents. Mankau R J Nematol; 1980 Oct; 12(4):244-52. PubMed ID: 19300699 [TBL] [Abstract][Full Text] [Related]
28. Effect of nutrition and environmental factors on the endoparasitic fungus Esteya vermicola, a biocontrol agent against pine wilt disease. Xue J; Zhang Y; Wang C; Wang Y; Hou J; Wang Z; Wang Y; Gu L; Sung C Curr Microbiol; 2013 Sep; 67(3):306-12. PubMed ID: 23595506 [TBL] [Abstract][Full Text] [Related]
29. Trichinella spiralis: Adaptation and parasitism. Zarlenga D; Wang Z; Mitreva M Vet Parasitol; 2016 Nov; 231():8-21. PubMed ID: 27425574 [TBL] [Abstract][Full Text] [Related]
30. Genome description of Phlebia radiata 79 with comparative genomics analysis on lignocellulose decomposition machinery of phlebioid fungi. Mäkinen M; Kuuskeri J; Laine P; Smolander OP; Kovalchuk A; Zeng Z; Asiegbu FO; Paulin L; Auvinen P; Lundell T BMC Genomics; 2019 May; 20(1):430. PubMed ID: 31138126 [TBL] [Abstract][Full Text] [Related]
31. Genome Studies on Nematophagous and Entomogenous Fungi in China. Zhang W; Cheng X; Liu X; Xiang M J Fungi (Basel); 2016 Feb; 2(1):. PubMed ID: 29376926 [TBL] [Abstract][Full Text] [Related]
32. Signal pathways involved in microbe-nematode interactions provide new insights into the biocontrol of plant-parasitic nematodes. Liang LM; Zou CG; Xu J; Zhang KQ Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1767):20180317. PubMed ID: 30967028 [TBL] [Abstract][Full Text] [Related]
33. Pan-Chromosome and Comparative Analysis of Du Y; Zou J; Yin Z; Chen T Microbiol Spectr; 2023 Feb; 11(2):e0292422. PubMed ID: 36853054 [TBL] [Abstract][Full Text] [Related]
34. Yellow Pigment Aurovertins Mediate Interactions between the Pathogenic Fungus Pochonia chlamydosporia and Its Nematode Host. Wang YL; Li LF; Li DX; Wang B; Zhang K; Niu X J Agric Food Chem; 2015 Jul; 63(29):6577-87. PubMed ID: 26151481 [TBL] [Abstract][Full Text] [Related]
35. AoMedA has a complex regulatory relationship with AoBrlA, AoAbaA, and AoWetA in conidiation, trap formation, and secondary metabolism in the nematode-trapping fungus Bai N; Xie M; Liu Q; Zhu Y; Yang X; Zhang KQ; Yang J Appl Environ Microbiol; 2023 Sep; 89(9):e0098323. PubMed ID: 37655869 [TBL] [Abstract][Full Text] [Related]
36. Drechslerella stenobrocha genome illustrates the mechanism of constricting rings and the origin of nematode predation in fungi. Liu K; Zhang W; Lai Y; Xiang M; Wang X; Zhang X; Liu X BMC Genomics; 2014 Feb; 15():114. PubMed ID: 24507587 [TBL] [Abstract][Full Text] [Related]
37. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
38. Genome and secretome analysis of Pochonia chlamydosporia provide new insight into egg-parasitic mechanisms. Lin R; Qin F; Shen B; Shi Q; Liu C; Zhang X; Jiao Y; Lu J; Gao Y; Suarez-Fernandez M; Lopez-Moya F; Lopez-Llorca LV; Wang G; Mao Z; Ling J; Yang Y; Cheng X; Xie B Sci Rep; 2018 Jan; 8(1):1123. PubMed ID: 29348510 [TBL] [Abstract][Full Text] [Related]
39. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Li J; Zou C; Xu J; Ji X; Niu X; Yang J; Huang X; Zhang KQ Annu Rev Phytopathol; 2015; 53():67-95. PubMed ID: 25938277 [TBL] [Abstract][Full Text] [Related]
40. Sequencing and functional analysis of the genome of a nematode egg-parasitic fungus, Pochonia chlamydosporia. Larriba E; Jaime MD; Carbonell-Caballero J; Conesa A; Dopazo J; Nislow C; Martín-Nieto J; Lopez-Llorca LV Fungal Genet Biol; 2014 Apr; 65():69-80. PubMed ID: 24530791 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]