BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 29315476)

  • 1. Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium.
    Shahab RL; Luterbacher JS; Brethauer S; Studer MH
    Biotechnol Bioeng; 2018 May; 115(5):1207-1215. PubMed ID: 29315476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of cellulosic organic acids via synthetic fungal consortia.
    Scholz SA; Graves I; Minty JJ; Lin XN
    Biotechnol Bioeng; 2018 Apr; 115(4):1096-1100. PubMed ID: 29205274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass.
    Minty JJ; Singer ME; Scholz SA; Bae CH; Ahn JH; Foster CE; Liao JC; Lin XN
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14592-7. PubMed ID: 23959872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose.
    Shahab RL; Brethauer S; Davey MP; Smith AG; Vignolini S; Luterbacher JS; Studer MH
    Science; 2020 Aug; 369(6507):. PubMed ID: 32855308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of D-lactic acid from lignocellulosic biomass.
    Zhang Y; Yoshida M; Vadlani PV
    Biotechnol Lett; 2018 Aug; 40(8):1167-1179. PubMed ID: 29956044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consolidated bioprocessing of lignocellulose for production of glucaric acid by an artificial microbial consortium.
    Li C; Lin X; Ling X; Li S; Fang H
    Biotechnol Biofuels; 2021 Apr; 14(1):110. PubMed ID: 33931115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits.
    Abdel-Rahman MA; Tashiro Y; Sonomoto K
    J Biotechnol; 2011 Dec; 156(4):286-301. PubMed ID: 21729724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering strategies for consolidated production of lactic acid from lignocellulosic biomass.
    Mazzoli R
    Biotechnol Appl Biochem; 2020 Jan; 67(1):61-72. PubMed ID: 31814156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consolidated bioprocessing for cellulosic ethanol conversion by cellulase-xylanase cell-surfaced yeast consortium.
    Chen L; Du JL; Zhan YJ; Li JA; Zuo RR; Tian S
    Prep Biochem Biotechnol; 2018; 48(7):653-661. PubMed ID: 29995567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LPMOs in cellulase mixtures affect fermentation strategies for lactic acid production from lignocellulosic biomass.
    Müller G; Kalyani DC; Horn SJ
    Biotechnol Bioeng; 2017 Mar; 114(3):552-559. PubMed ID: 27596285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient lactic acid production from dilute acid-pretreated lignocellulosic biomass by a synthetic consortium of engineered Pseudomonas putida and Bacillus coagulans.
    Zou L; Ouyang S; Hu Y; Zheng Z; Ouyang J
    Biotechnol Biofuels; 2021 Nov; 14(1):227. PubMed ID: 34838093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei.
    Borin GP; Sanchez CC; de Santana ES; Zanini GK; Dos Santos RAC; de Oliveira Pontes A; de Souza AT; Dal'Mas RMMTS; Riaño-Pachón DM; Goldman GH; Oliveira JVC
    BMC Genomics; 2017 Jun; 18(1):501. PubMed ID: 28666414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consolidated bioprocessing performance of a two-species microbial consortium for butanol production from lignocellulosic biomass.
    Jiang Y; Lv Y; Wu R; Lu J; Dong W; Zhou J; Zhang W; Xin F; Jiang M
    Biotechnol Bioeng; 2020 Oct; 117(10):2985-2995. PubMed ID: 32946127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consolidated bioprocessing of cellulose to itaconic acid by a co-culture of Trichoderma reesei and Ustilago maydis.
    Schlembach I; Hosseinpour Tehrani H; Blank LM; Büchs J; Wierckx N; Regestein L; Rosenbaum MA
    Biotechnol Biofuels; 2020 Dec; 13(1):207. PubMed ID: 33317635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Top-Down Enrichment Guides in Formation of Synthetic Microbial Consortia for Biomass Degradation.
    Gilmore SP; Lankiewicz TS; Wilken SE; Brown JL; Sexton JA; Henske JK; Theodorou MK; Valentine DL; O'Malley MA
    ACS Synth Biol; 2019 Sep; 8(9):2174-2185. PubMed ID: 31461261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct conversion of cellulose to L-lactic acid by a novel thermophilic Caldicellulosiruptor strain.
    Svetlitchnyi VA; Svetlichnaya TP; Falkenhan DA; Swinnen S; Knopp D; Läufer A
    Biotechnol Biofuels Bioprod; 2022 May; 15(1):44. PubMed ID: 35501875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Multispecies Fungal Biofilm Approach to Enhance the Celluloyltic Efficiency of Membrane Reactors for Consolidated Bioprocessing of Plant Biomass.
    Xiros C; Studer MH
    Front Microbiol; 2017; 8():1930. PubMed ID: 29067006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative strategies for lignocellulose fermentation through lactic acid bacteria: the state of the art and perspectives.
    Tarraran L; Mazzoli R
    FEMS Microbiol Lett; 2018 Aug; 365(15):. PubMed ID: 30007320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative proteomic analysis of secretome of microbial consortium during saw dust utilization.
    Adav SS; Ravindran A; Cheow ES; Sze SK
    J Proteomics; 2012 Oct; 75(18):5590-603. PubMed ID: 22992538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of glucosamine in biomass of Trichoderma reesei cultivated on lignocellulosic substrates.
    Chysirichote T; Mapisansup W; Aroonsong S
    J Basic Microbiol; 2021 Apr; 61(4):305-314. PubMed ID: 33605476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.