These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29315517)

  • 1. Role of respiratory terminal oxidases in the extracellular electron transfer ability of cyanobacteria.
    Sekar N; Wang J; Zhou Y; Fang Y; Yan Y; Ramasamy RP
    Biotechnol Bioeng; 2018 May; 115(5):1361-1366. PubMed ID: 29315517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced photo-bioelectrochemical energy conversion by genetically engineered cyanobacteria.
    Sekar N; Jain R; Yan Y; Ramasamy RP
    Biotechnol Bioeng; 2016 Mar; 113(3):675-9. PubMed ID: 26348367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quinol and cytochrome oxidases in the cyanobacterium Synechocystis sp. PCC 6803.
    Howitt CA; Vermaas WF
    Biochemistry; 1998 Dec; 37(51):17944-51. PubMed ID: 9922162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the photosynthetic electron transfer chain in electrogenic activity of cyanobacteria.
    Pisciotta JM; Zou Y; Baskakov IV
    Appl Microbiol Biotechnol; 2011 Jul; 91(2):377-85. PubMed ID: 21484209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terminal oxidase mutants of the cyanobacterium Synechocystis sp. PCC 6803 show increased electrogenic activity in biological photo-voltaic systems.
    Bradley RW; Bombelli P; Lea-Smith DJ; Howe CJ
    Phys Chem Chem Phys; 2013 Aug; 15(32):13611-8. PubMed ID: 23836107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terminal oxidases of cyanobacteria.
    Hart SE; Schlarb-Ridley BG; Bendall DS; Howe CJ
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):832-5. PubMed ID: 16042609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobile cytochrome c2 and membrane-anchored cytochrome cy are both efficient electron donors to the cbb3- and aa3-type cytochrome c oxidases during respiratory growth of Rhodobacter sphaeroides.
    Daldal F; Mandaci S; Winterstein C; Myllykallio H; Duyck K; Zannoni D
    J Bacteriol; 2001 Mar; 183(6):2013-24. PubMed ID: 11222600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of two cytochrome oxidase operons in the marine cyanobacterium Synechococcus sp. PCC 7002: inactivation of ctaDI affects the PS I:PS II ratio.
    Nomura CT; Persson S; Shen G; Inoue-Sakamoto K; Bryant DA
    Photosynth Res; 2006 Feb; 87(2):215-28. PubMed ID: 16437183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocurrent generation by immobilized cyanobacteria via direct electron transport in photo-bioelectrochemical cells.
    Sekar N; Umasankar Y; Ramasamy RP
    Phys Chem Chem Phys; 2014 May; 16(17):7862-71. PubMed ID: 24643249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen as Acceptor.
    Borisov VB; Verkhovsky MI
    EcoSal Plus; 2015; 6(2):. PubMed ID: 26734697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjustments to Photosystem Stoichiometry and Electron Transfer Proteins Are Key to the Remarkably Fast Growth of the Cyanobacterium
    Ungerer J; Lin PC; Chen HY; Pakrasi HB
    mBio; 2018 Feb; 9(1):. PubMed ID: 29437923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinguishing the Roles of Thylakoid Respiratory Terminal Oxidases in the Cyanobacterium Synechocystis sp. PCC 6803.
    Ermakova M; Huokko T; Richaud P; Bersanini L; Howe CJ; Lea-Smith DJ; Peltier G; Allahverdiyeva Y
    Plant Physiol; 2016 Jun; 171(2):1307-19. PubMed ID: 27208274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thylakoid terminal oxidases are essential for the cyanobacterium Synechocystis sp. PCC 6803 to survive rapidly changing light intensities.
    Lea-Smith DJ; Ross N; Zori M; Bendall DS; Dennis JS; Scott SA; Smith AG; Howe CJ
    Plant Physiol; 2013 May; 162(1):484-95. PubMed ID: 23463783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyanide-insensitive quinol oxidase (CIO) from Gluconobacter oxydans is a unique terminal oxidase subfamily of cytochrome bd.
    Miura H; Mogi T; Ano Y; Migita CT; Matsutani M; Yakushi T; Kita K; Matsushita K
    J Biochem; 2013 Jun; 153(6):535-45. PubMed ID: 23526305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Azorhizobium caulinodans uses both cytochrome bd (quinol) and cytochrome cbb3 (cytochrome c) terminal oxidases for symbiotic N2 fixation.
    Kaminski PA; Kitts CL; Zimmerman Z; Ludwig RA
    J Bacteriol; 1996 Oct; 178(20):5989-94. PubMed ID: 8830696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of three bioenergetically active respiratory terminal oxidases in the cyanobacterium Synechocystis sp. strain PCC 6803.
    Pils D; Schmetterer G
    FEMS Microbiol Lett; 2001 Sep; 203(2):217-22. PubMed ID: 11583851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extended heme promiscuity in the cyanobacterial cytochrome c oxidase: characterization of native complexes containing hemes A, O, and D, respectively.
    Fromwald S; Zoder R; Wastyn M; Lübben M; Peschek GA
    Arch Biochem Biophys; 1999 Jul; 367(1):122-8. PubMed ID: 10375407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Features of Organization and Mechanism of Catalysis of Two Families of Terminal Oxidases: Heme-Copper and bd-Type.
    Borisov VB; Siletsky SA
    Biochemistry (Mosc); 2019 Nov; 84(11):1390-1402. PubMed ID: 31760925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular localization of cytochrome bd in cyanobacteria using genetic code expansion.
    Cohen M; Ozer E; Kushmaro A; Alfonta L
    Biotechnol Bioeng; 2020 Feb; 117(2):523-530. PubMed ID: 31612992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica.
    Das A; Silaghi-Dumitrescu R; Ljungdahl LG; Kurtz DM
    J Bacteriol; 2005 Mar; 187(6):2020-9. PubMed ID: 15743950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.