These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29315860)

  • 21. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Manipulating microparticles with single surface-immobilized nanoparticles.
    Zhang J; Srivastava S; Duffadar R; Davis JM; Rotello VM; Santore MM
    Langmuir; 2008 Jun; 24(13):6404-8. PubMed ID: 18537273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New opto-plasmonic tweezers for manipulation and rotation of biological cells--design and fabrication.
    Miao X; Lin LY
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4318-21. PubMed ID: 17946622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time parallel 3D multiple particle tracking with single molecule centrifugal force microscopy.
    Kou L; Jin L; Lei H; Hu C; Li H; Hu X; Hu X
    J Microsc; 2019 Mar; 273(3):178-188. PubMed ID: 30489640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient optical trapping and visualization of silver nanoparticles.
    Bosanac L; Aabo T; Bendix PM; Oddershede LB
    Nano Lett; 2008 May; 8(5):1486-91. PubMed ID: 18386911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic nanoparticles for the measurement of cell mechanics using force-induced remnant magnetization spectroscopy.
    Xu M; Feng X; Feng F; Pei H; Liu R; Li Q; Yu C; Zhang D; Wang X; Yao L
    Nanoscale; 2020 Jul; 12(27):14573-14580. PubMed ID: 32613995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles.
    Jin H; Heller DA; Sharma R; Strano MS
    ACS Nano; 2009 Jan; 3(1):149-58. PubMed ID: 19206261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanophotonic force microscopy: characterizing particle-surface interactions using near-field photonics.
    Schein P; Kang P; O'Dell D; Erickson D
    Nano Lett; 2015 Feb; 15(2):1414-20. PubMed ID: 25625877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic simulation and modeling of the motion modes produced during the 3D controlled manipulation of biological micro/nanoparticles based on the AFM.
    Saraee MB; Korayem MH
    J Theor Biol; 2015 Aug; 378():65-78. PubMed ID: 25953389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy.
    Kilpatrick JI; Revenko I; Rodriguez BJ
    Adv Healthc Mater; 2015 Nov; 4(16):2456-74. PubMed ID: 26200464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lipid bilayer-integrated optoelectronic tweezers for nanoparticle manipulations.
    Ota S; Wang S; Wang Y; Yin X; Zhang X
    Nano Lett; 2013 Jun; 13(6):2766-70. PubMed ID: 23659726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gold Nano-Bio-Interaction to Modulate Mechanobiological Responses for Cancer Therapy Applications.
    Sohrabi Kashani A; Larocque K; Piekny A; Packirisamy M
    ACS Appl Bio Mater; 2022 Aug; 5(8):3741-3752. PubMed ID: 35839330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gold nanoparticle aggregation-based highly sensitive DNA detection using atomic force microscopy.
    Bui MP; Baek TJ; Seong GH
    Anal Bioanal Chem; 2007 Jul; 388(5-6):1185-90. PubMed ID: 17534606
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-molecule manipulation and detection.
    Zhao D; Liu S; Gao Y
    Acta Biochim Biophys Sin (Shanghai); 2018 Mar; 50(3):231-237. PubMed ID: 29377975
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanomechanical measurement of adhesion and migration of leukemia cells with phorbol 12-myristate 13-acetate treatment.
    Zhou ZL; Ma J; Tong MH; Chan BP; Wong AS; Ngan AH
    Int J Nanomedicine; 2016; 11():6533-6545. PubMed ID: 27994457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture.
    Rai PK; Kumar V; Lee S; Raza N; Kim KH; Ok YS; Tsang DCW
    Environ Int; 2018 Oct; 119():1-19. PubMed ID: 29909166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM.
    Zhang W; Stack AG; Chen Y
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):316-24. PubMed ID: 20932723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular recognition force spectroscopy: a new tool to tailor targeted nanoparticles.
    Oliveira H; Rangl M; Ebner A; Mayer B; Hinterdorfer P; Pêgo AP
    Small; 2011 May; 7(9):1236-41. PubMed ID: 21456083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity.
    Caputo F; Clogston J; Calzolai L; Rösslein M; Prina-Mello A
    J Control Release; 2019 Apr; 299():31-43. PubMed ID: 30797868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.