These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Range size and growth temperature influence Eucalyptus species responses to an experimental heatwave. Aspinwall MJ; Pfautsch S; Tjoelker MG; Vårhammar A; Possell M; Drake JE; Reich PB; Tissue DT; Atkin OK; Rymer PD; Dennison S; Van Sluyter SC Glob Chang Biol; 2019 May; 25(5):1665-1684. PubMed ID: 30746837 [TBL] [Abstract][Full Text] [Related]
3. An extreme heatwave enhanced the xanthophyll de-epoxidation state in leaves of Dhami N; Drake JE; Tjoelker MG; Tissue DT; Cazzonelli CI Physiol Mol Biol Plants; 2020 Feb; 26(2):211-218. PubMed ID: 32153324 [TBL] [Abstract][Full Text] [Related]
4. Photosynthetic enhancement by elevated CO₂ depends on seasonal temperatures for warmed and non-warmed Eucalyptus globulus trees. Quentin AG; Crous KY; Barton CV; Ellsworth DS Tree Physiol; 2015 Nov; 35(11):1249-63. PubMed ID: 26496960 [TBL] [Abstract][Full Text] [Related]
5. Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis. Aspinwall MJ; Drake JE; Campany C; Vårhammar A; Ghannoum O; Tissue DT; Reich PB; Tjoelker MG New Phytol; 2016 Oct; 212(2):354-67. PubMed ID: 27284963 [TBL] [Abstract][Full Text] [Related]
6. Structural adjustments in resprouting trees drive differences in post-fire transpiration. Nolan RH; Mitchell PJ; Bradstock RA; Lane PN Tree Physiol; 2014 Feb; 34(2):123-36. PubMed ID: 24536069 [TBL] [Abstract][Full Text] [Related]
7. Repeated extreme heatwaves result in higher leaf thermal tolerances and greater safety margins. Ahrens CW; Challis A; Byrne M; Leigh A; Nicotra AB; Tissue D; Rymer P New Phytol; 2021 Nov; 232(3):1212-1225. PubMed ID: 34292598 [TBL] [Abstract][Full Text] [Related]
8. Interactive effects of water supply and defoliation on photosynthesis, plant water status and growth of Eucalyptus globulus Labill. Quentin AG; O'Grady AP; Beadle CL; Mohammed C; Pinkard EA Tree Physiol; 2012 Aug; 32(8):958-67. PubMed ID: 22874831 [TBL] [Abstract][Full Text] [Related]
9. Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance. Slot M; Rey-Sánchez C; Gerber S; Lichstein JW; Winter K; Kitajima K Glob Chang Biol; 2014 Sep; 20(9):2915-26. PubMed ID: 24604769 [TBL] [Abstract][Full Text] [Related]
10. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm. Koch GW; Sillett SC; Antoine ME; Williams CB Oecologia; 2015 Feb; 177(2):321-31. PubMed ID: 25542214 [TBL] [Abstract][Full Text] [Related]
11. Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis? Drake JE; Tjoelker MG; Aspinwall MJ; Reich PB; Barton CV; Medlyn BE; Duursma RA New Phytol; 2016 Aug; 211(3):850-63. PubMed ID: 27122489 [TBL] [Abstract][Full Text] [Related]
12. The synergistic effect of hydraulic and thermal impairments accounts for the severe crown damage in Fraxinus mandshurica seedlings following the combined drought-heatwave stress. Gong XW; Hao GY Sci Total Environ; 2023 Jan; 856(Pt 1):159017. PubMed ID: 36167124 [TBL] [Abstract][Full Text] [Related]
13. High heat tolerance, evaporative cooling, and stomatal decoupling regulate canopy temperature and their safety margins in three European oak species. Gauthey A; Kahmen A; Limousin JM; Vilagrosa A; Didion-Gency M; Mas E; Milano A; Tunas A; Grossiord C Glob Chang Biol; 2024 Aug; 30(8):e17439. PubMed ID: 39092538 [TBL] [Abstract][Full Text] [Related]
14. A common thermal niche among geographically diverse populations of the widely distributed tree species Eucalyptus tereticornis: No evidence for adaptation to climate-of-origin. Drake JE; Vårhammar A; Kumarathunge D; Medlyn BE; Pfautsch S; Reich PB; Tissue DT; Ghannoum O; Tjoelker MG Glob Chang Biol; 2017 Dec; 23(12):5069-5082. PubMed ID: 28544671 [TBL] [Abstract][Full Text] [Related]
15. Intensive leaf cooling promotes tree survival during a record heatwave. Posch BC; Bush SE; Koepke DF; Schuessler A; Anderegg LLD; Aparecido LMT; Blonder BW; Guo JS; Kerr KL; Moran ME; Cooper HF; Doughty CE; Gehring CA; Whitham TG; Allan GJ; Hultine KR Proc Natl Acad Sci U S A; 2024 Oct; 121(43):e2408583121. PubMed ID: 39401366 [TBL] [Abstract][Full Text] [Related]
17. Edge type affects leaf-level water relations and estimated transpiration of Eucalyptus arenacea. Wright TE; Tausz M; Kasel S; Volkova L; Merchant A; Bennett LT Tree Physiol; 2012 Mar; 32(3):280-93. PubMed ID: 22367763 [TBL] [Abstract][Full Text] [Related]
18. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought. Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118 [TBL] [Abstract][Full Text] [Related]
19. Restricted internal diffusion weakens transpiration-photosynthesis coupling during heatwaves: Evidence from leaf carbonyl sulphide exchange. Sun W; Maseyk K; Lett C; Seibt U Plant Cell Environ; 2024 May; 47(5):1813-1833. PubMed ID: 38321806 [TBL] [Abstract][Full Text] [Related]
20. Similar patterns of leaf temperatures and thermal acclimation to warming in temperate and tropical tree canopies. Crous KY; Cheesman AW; Middleby K; Rogers EIE; Wujeska-Klause A; Bouet AYM; Ellsworth DS; Liddell MJ; Cernusak LA; Barton CVM Tree Physiol; 2023 Aug; 43(8):1383-1399. PubMed ID: 37099805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]