BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 29316095)

  • 1. Visible-Light-Mediated Decarboxylative Radical Additions to Vinyl Boronic Esters: Rapid Access to γ-Amino Boronic Esters.
    Noble A; Mega RS; Pflästerer D; Myers EL; Aggarwal VK
    Angew Chem Int Ed Engl; 2018 Feb; 57(8):2155-2159. PubMed ID: 29316095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoredox-Mediated Deoxygenative Radical Additions of Aromatic Acids to Vinyl Boronic Esters and gem-Diborylalkenes.
    Nagaraju A; Saiaede T; Eghbarieh N; Masarwa A
    Chemistry; 2023 Jan; 29(3):e202202646. PubMed ID: 36222076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decarboxylative Conjunctive Cross-coupling of Vinyl Boronic Esters using Metallaphotoredox Catalysis.
    Mega RS; Duong VK; Noble A; Aggarwal VK
    Angew Chem Int Ed Engl; 2020 Mar; 59(11):4375-4379. PubMed ID: 31909870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Light-Enabled Access to α-Boryl Radicals: Application in the Stereodivergent Synthesis of Allyl Boronic Esters.
    Marotta A; Fang H; Adams CE; Sun Marcus K; Daniliuc CG; Molloy JJ
    Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202307540. PubMed ID: 37326432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual Nickel/Photoredox-Catalyzed Site-Selective Cross-Coupling of 1,2-Bis-Boronic Esters Enabled by 1,2-Boron Shifts.
    Wang H; Han W; Noble A; Aggarwal VK
    Angew Chem Int Ed Engl; 2022 Aug; 61(34):e202207988. PubMed ID: 35779000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1,2-Boron Shifts of β-Boryl Radicals Generated from Bis-boronic Esters Using Photoredox Catalysis.
    Kaiser D; Noble A; Fasano V; Aggarwal VK
    J Am Chem Soc; 2019 Sep; 141(36):14104-14109. PubMed ID: 31461622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic direct borylation of carboxylic acids.
    Wei Q; Lee Y; Liang W; Chen X; Mu BS; Cui XY; Wu W; Bai S; Liu Z
    Nat Commun; 2022 Nov; 13(1):7112. PubMed ID: 36402764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decarboxylative borylation.
    Li C; Wang J; Barton LM; Yu S; Tian M; Peters DS; Kumar M; Yu AW; Johnson KA; Chatterjee AK; Yan M; Baran PS
    Science; 2017 Jun; 356(6342):. PubMed ID: 28408721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visible-Light-Driven Strain-Increase Ring Contraction Allows the Synthesis of Cyclobutyl Boronic Esters.
    Davenport R; Silvi M; Noble A; Hosni Z; Fey N; Aggarwal VK
    Angew Chem Int Ed Engl; 2020 Apr; 59(16):6525-6528. PubMed ID: 31912963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoinduced decarboxylative borylation of carboxylic acids.
    Fawcett A; Pradeilles J; Wang Y; Mutsuga T; Myers EL; Aggarwal VK
    Science; 2017 Jul; 357(6348):283-286. PubMed ID: 28619717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Merging photoredox and nickel catalysis: decarboxylative cross-coupling of carboxylic acids with vinyl halides.
    Noble A; McCarver SJ; MacMillan DW
    J Am Chem Soc; 2015 Jan; 137(2):624-7. PubMed ID: 25521443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ART─An Amino Radical Transfer Strategy for C(sp
    Speckmeier E; Maier TC
    J Am Chem Soc; 2022 Jun; 144(22):9997-10005. PubMed ID: 35613328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible- and UV-Light-Induced Decarboxylative Radical Reactions of Benzoic Acids Using Organic Photoredox Catalysts.
    Kubosaki S; Takeuchi H; Iwata Y; Tanaka Y; Osaka K; Yamawaki M; Morita T; Yoshimi Y
    J Org Chem; 2020 Apr; 85(8):5362-5369. PubMed ID: 32174115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Synthesis of α-Haloboronic Esters via Cu-Catalyzed Atom Transfer Radical Addition.
    Ho TD; Lee BJ; Tan C; Utley JA; Ngo NQ; Hull KL
    J Am Chem Soc; 2023 Dec; 145(50):27230-27235. PubMed ID: 38054923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoredox-Catalyzed Decarboxylative Bromination, Chlorination and Thiocyanation Using Inorganic Salts.
    Wu J; Shu C; Li Z; Noble A; Aggarwal VK
    Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202309684. PubMed ID: 37522816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective Coupling of 1,2-Bis-Boronic Esters at the more Substituted Site through Visible-Light Activation of Electron Donor-Acceptor Complexes.
    Wang H; Wu J; Noble A; Aggarwal VK
    Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202202061. PubMed ID: 35213775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Lewis Base Catalysis Approach for the Photoredox Activation of Boronic Acids and Esters.
    Lima F; Sharma UK; Grunenberg L; Saha D; Johannsen S; Sedelmeier J; Van der Eycken EV; Ley SV
    Angew Chem Int Ed Engl; 2017 Nov; 56(47):15136-15140. PubMed ID: 29024307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic dual decarboxylative alkenylation mediated by triphenylphosphine and sodium iodide.
    Wang HY; Zhong LJ; Lv GF; Li Y; Li JH
    Org Biomol Chem; 2020 Aug; 18(29):5589-5593. PubMed ID: 32677630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones by the Decarboxylative Arylation of α-Oxo Acids.
    Chu L; Lipshultz JM; MacMillan DW
    Angew Chem Int Ed Engl; 2015 Jun; 54(27):7929-33. PubMed ID: 26014029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decarboxylation of β-boryl NHPI esters enables radical 1,2-boron shift for the assembly of versatile organoborons.
    Guo Y; Wang X; Li C; Su J; Xu J; Song Q
    Nat Commun; 2023 Sep; 14(1):5693. PubMed ID: 37709736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.