These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 29316290)
1. A 3D bioprinted in situ conjugated-co-fabricated scaffold for potential bone tissue engineering applications. Sithole MN; Kumar P; du Toit LC; Marimuthu T; Choonara YE; Pillay V J Biomed Mater Res A; 2018 May; 106(5):1311-1321. PubMed ID: 29316290 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
3. Development of a new carbon nanotube-alginate-hydroxyapatite tricomponent composite scaffold for application in bone tissue engineering. Rajesh R; Ravichandran YD Int J Nanomedicine; 2015; 10 Suppl 1(Suppl 1):7-15. PubMed ID: 26491303 [TBL] [Abstract][Full Text] [Related]
4. Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting. Chen YW; Shen YF; Ho CC; Yu J; Wu YA; Wang K; Shih CT; Shie MY Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():679-687. PubMed ID: 30033302 [TBL] [Abstract][Full Text] [Related]
5. Multiscale porosity in a 3D printed gellan-gelatin composite for bone tissue engineering. Gupta D; Vashisth P; Bellare J Biomed Mater; 2021 Apr; 16(3):. PubMed ID: 33761468 [TBL] [Abstract][Full Text] [Related]
6. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering. Shi D; Shen J; Zhang Z; Shi C; Chen M; Gu Y; Liu Y J Biomed Mater Res A; 2019 Aug; 107(8):1615-1627. PubMed ID: 30920134 [TBL] [Abstract][Full Text] [Related]
7. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional (3D) printed scaffold and material selection for bone repair. Zhang L; Yang G; Johnson BN; Jia X Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607 [TBL] [Abstract][Full Text] [Related]
9. Bioprinting Pattern-Dependent Electrical/Mechanical Behavior of Cardiac Alginate Implants: Characterization and Ex Vivo Phase-Contrast Microtomography Assessment. Izadifar M; Babyn P; Kelly ME; Chapman D; Chen X Tissue Eng Part C Methods; 2017 Sep; 23(9):548-564. PubMed ID: 28726575 [TBL] [Abstract][Full Text] [Related]
10. Form and functional repair of long bone using 3D-printed bioactive scaffolds. Tovar N; Witek L; Atria P; Sobieraj M; Bowers M; Lopez CD; Cronstein BN; Coelho PG J Tissue Eng Regen Med; 2018 Sep; 12(9):1986-1999. PubMed ID: 30044544 [TBL] [Abstract][Full Text] [Related]
11. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization. Zhang J; Eyisoylu H; Qin XH; Rubert M; Müller R Acta Biomater; 2021 Feb; 121():637-652. PubMed ID: 33326888 [TBL] [Abstract][Full Text] [Related]
12. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280 [TBL] [Abstract][Full Text] [Related]
13. 3D bioprinted poly(lactic acid)/mesoporous bioactive glass based biomimetic scaffold with rapid apatite crystallization and in-vitro Cytocompatability for bone tissue engineering. Pant S; Thomas S; Loganathan S; Valapa RB Int J Biol Macromol; 2022 Sep; 217():979-997. PubMed ID: 35908677 [TBL] [Abstract][Full Text] [Related]
14. 3D Bioprinting Technologies for Tissue Engineering Applications. Gu BK; Choi DJ; Park SJ; Kim YJ; Kim CH Adv Exp Med Biol; 2018; 1078():15-28. PubMed ID: 30357616 [TBL] [Abstract][Full Text] [Related]
15. Construction of bionic tissue engineering cartilage scaffold based on three-dimensional printing and oriented frozen technology. Xu Y; Guo X; Yang S; Li L; Zhang P; Sun W; Liu C; Mi S J Biomed Mater Res A; 2018 Jun; 106(6):1664-1676. PubMed ID: 29460433 [TBL] [Abstract][Full Text] [Related]
16. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of a polyvinyl alcohol-alginate based hydrogel for precise 3D bioprinting. Yu F; Han X; Zhang K; Dai B; Shen S; Gao X; Teng H; Wang X; Li L; Ju H; Wang W; Zhang J; Jiang Q J Biomed Mater Res A; 2018 Nov; 106(11):2944-2954. PubMed ID: 30329209 [TBL] [Abstract][Full Text] [Related]
18. Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: Experimental and numerical approaches. Naghieh S; Karamooz-Ravari MR; Sarker MD; Karki E; Chen X J Mech Behav Biomed Mater; 2018 Apr; 80():111-118. PubMed ID: 29414466 [TBL] [Abstract][Full Text] [Related]
19. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES]. Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872 [TBL] [Abstract][Full Text] [Related]
20. Three dimensional printed calcium phosphate and poly(caprolactone) composites with improved mechanical properties and preserved microstructure. Vella JB; Trombetta RP; Hoffman MD; Inzana J; Awad H; Benoit DSW J Biomed Mater Res A; 2018 Mar; 106(3):663-672. PubMed ID: 29044984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]