These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29316340)

  • 1. An adaptive hybridizable discontinuous Galerkin approach for cardiac electrophysiology.
    Hoermann JM; Bertoglio C; Kronbichler M; Pfaller MR; Chabiniok R; Wall WA
    Int J Numer Method Biomed Eng; 2018 May; 34(5):e2959. PubMed ID: 29316340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology.
    Heidenreich EA; Ferrero JM; Doblaré M; Rodríguez JF
    Ann Biomed Eng; 2010 Jul; 38(7):2331-45. PubMed ID: 20238165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Balancing conduction velocity error in cardiac electrophysiology using a modified quadrature approach.
    Woodworth LA; Cansız B; Kaliske M
    Int J Numer Method Biomed Eng; 2022 May; 38(5):e3589. PubMed ID: 35266643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance evaluation of GPU parallelization, space-time adaptive algorithms, and their combination for simulating cardiac electrophysiology.
    Sachetto Oliveira R; Martins Rocha B; Burgarelli D; Meira W; Constantinides C; Weber Dos Santos R
    Int J Numer Method Biomed Eng; 2018 Feb; 34(2):. PubMed ID: 28636811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Space-time adaptive numerical methods for geophysical applications.
    Castro CE; Käser M; Toro EF
    Philos Trans A Math Phys Eng Sci; 2009 Nov; 367(1907):4613-31. PubMed ID: 19840984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of cardiac electrophysiology on next-generation high-performance computers.
    Bordas R; Carpentieri B; Fotia G; Maggio F; Nobes R; Pitt-Francis J; Southern J
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1895):1951-69. PubMed ID: 19380320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations.
    Huang CH; Lin CC; Ju MS
    Comput Biol Med; 2015 Feb; 57():150-8. PubMed ID: 25557200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilized hybrid discontinuous Galerkin finite element method for the cardiac monodomain equation.
    Rocha BM; Dos Santos RW; Igreja I; Loula AFD
    Int J Numer Method Biomed Eng; 2020 Jul; 36(7):e3341. PubMed ID: 32293783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards accurate numerical method for monodomain models using a realistic heart geometry.
    Belhamadia Y; Fortin A; Bourgault Y
    Math Biosci; 2009 Aug; 220(2):89-101. PubMed ID: 19447119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced-order modeling for cardiac electrophysiology. Application to parameter identification.
    Boulakia M; Schenone E; Gerbeau JF
    Int J Numer Method Biomed Eng; 2012; 28(6-7):727-44. PubMed ID: 25364848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating Cardiac Electrophysiology Using Unstructured All-Hexahedra Spectral Elements.
    Cuccuru G; Fotia G; Maggio F; Southern J
    Biomed Res Int; 2015; 2015():473279. PubMed ID: 26583112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-implicit Non-conforming Finite-Element Schemes for Cardiac Electrophysiology: A Framework for Mesh-Coarsening Heart Simulations.
    Jilberto J; Hurtado DE
    Front Physiol; 2018; 9():1513. PubMed ID: 30425648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modelling of cardiac electrophysiology: explanation of the variability of results from different numerical solvers.
    Pathmanathan P; Bernabeu MO; Niederer SA; Gavaghan DJ; Kay D
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):890-903. PubMed ID: 25099569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A numerical study on the effects of spatial and temporal discretization in cardiac electrophysiology.
    Woodworth LA; Cansız B; Kaliske M
    Int J Numer Method Biomed Eng; 2021 May; 37(5):e3443. PubMed ID: 33522111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Error Estimates and Adaptivity of the Space-Time Discontinuous Galerkin Method for Solving the Richards Equation.
    Dolejší V; Shin HG; Vlasák M
    J Sci Comput; 2024; 101(1):11. PubMed ID: 39309293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Optimized Schwarz Method for the Optical Response Model Discretized by HDG Method.
    Chen JF; Gu XM; Li L; Zhou P
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of complex and microscopic models of cardiac electrophysiology powered by multi-GPU platforms.
    Gouvêa de Barros B; Sachetto Oliveira R; Meira W; Lobosco M; Weber dos Santos R
    Comput Math Methods Med; 2012; 2012():824569. PubMed ID: 23227109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient High-Order Space-Angle-Energy Polytopic Discontinuous Galerkin Finite Element Methods for Linear Boltzmann Transport.
    Houston P; Hubbard ME; Radley TJ; Sutton OJ; Widdowson RSJ
    J Sci Comput; 2024; 100(2):52. PubMed ID: 38966341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation.
    Bou Matar O; Guerder PY; Li Y; Vandewoestyne B; Van Den Abeele K
    J Acoust Soc Am; 2012 May; 131(5):3650-63. PubMed ID: 22559342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An arbitrary high-order discontinuous Galerkin method with local time-stepping for linear acoustic wave propagation.
    Wang H; Cosnefroy M; Hornikx M
    J Acoust Soc Am; 2021 Jan; 149(1):569. PubMed ID: 33514145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.