BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29316712)

  • 1. Speeding Up the Identification of Cystic Fibrosis Transmembrane Conductance Regulator-Targeted Drugs: An Approach Based on Bioinformatics Strategies and Surface Plasmon Resonance.
    Rusnati M; Sala D; Orro A; Bugatti A; Trombetti G; Cichero E; Urbinati C; Di Somma M; Millo E; Galietta LJV; Milanesi L; Fossa P; D'Ursi P
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29316712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding screen for cystic fibrosis transmembrane conductance regulator correctors finds new chemical matter and yields insights into cystic fibrosis therapeutic strategy.
    Hall JD; Wang H; Byrnes LJ; Shanker S; Wang K; Efremov IV; Chong PA; Forman-Kay JD; Aulabaugh AE
    Protein Sci; 2016 Feb; 25(2):360-73. PubMed ID: 26444971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into interactions between the nucleotide-binding domain of CFTR and keratin 8.
    Premchandar A; Kupniewska A; Bonna A; Faure G; Fraczyk T; Roldan A; Hoffmann B; Faria da Cunha M; Herrmann H; Lukacs GL; Edelman A; Dadlez M
    Protein Sci; 2017 Feb; 26(2):343-354. PubMed ID: 27870250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of novel potent ΔF508-CFTR correctors that target the nucleotide binding domain.
    Odolczyk N; Fritsch J; Norez C; Servel N; da Cunha MF; Bitam S; Kupniewska A; Wiszniewski L; Colas J; Tarnowski K; Tondelier D; Roldan A; Saussereau EL; Melin-Heschel P; Wieczorek G; Lukacs GL; Dadlez M; Faure G; Herrmann H; Ollero M; Becq F; Zielenkiewicz P; Edelman A
    EMBO Mol Med; 2013 Oct; 5(10):1484-501. PubMed ID: 23982976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of Phe508 in the first nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator increases its affinity for the heat shock cognate 70 chaperone.
    Scott-Ward TS; Amaral MD
    FEBS J; 2009 Dec; 276(23):7097-109. PubMed ID: 19878303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry.
    Lewis HA; Wang C; Zhao X; Hamuro Y; Conners K; Kearins MC; Lu F; Sauder JM; Molnar KS; Coales SJ; Maloney PC; Guggino WB; Wetmore DR; Weber PC; Hunt JF
    J Mol Biol; 2010 Feb; 396(2):406-30. PubMed ID: 19944699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with cystic fibrosis pathogenesis.
    Pagano MA; Arrigoni G; Marin O; Sarno S; Meggio F; Treharne KJ; Mehta A; Pinna LA
    Biochemistry; 2008 Jul; 47(30):7925-36. PubMed ID: 18597485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR.
    Du K; Sharma M; Lukacs GL
    Nat Struct Mol Biol; 2005 Jan; 12(1):17-25. PubMed ID: 15619635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the interactions between nucleotide binding domains and membrane spanning domains in cystic fibrosis transmembrane regulator: A molecular dynamic study.
    Belmonte L; Moran O
    Biochimie; 2015 Apr; 111():19-29. PubMed ID: 25640670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico drug repositioning on F508del-CFTR: A proof-of-concept study on the AIFA library.
    Orro A; Uggeri M; Rusnati M; Urbinati C; Pedemonte N; Pesce E; Moscatelli M; Padoan R; Cichero E; Fossa P; D'Ursi P
    Eur J Med Chem; 2021 Mar; 213():113186. PubMed ID: 33472120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic Approaches to Improve Correction of the Most Common Disease-Causing Mutation in Cystic Fibrosis.
    Bali V; Lazrak A; Guroji P; Matalon S; Bebok Z
    PLoS One; 2016; 11(5):e0155882. PubMed ID: 27214033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a NBD1-binding pharmacological chaperone that corrects the trafficking defect of F508del-CFTR.
    Sampson HM; Robert R; Liao J; Matthes E; Carlile GW; Hanrahan JW; Thomas DY
    Chem Biol; 2011 Feb; 18(2):231-42. PubMed ID: 21338920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendrimer-based selective autophagy-induction rescues ΔF508-CFTR and inhibits Pseudomonas aeruginosa infection in cystic fibrosis.
    Brockman SM; Bodas M; Silverberg D; Sharma A; Vij N
    PLoS One; 2017; 12(9):e0184793. PubMed ID: 28902888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Annexin V is directly involved in cystic fibrosis transmembrane conductance regulator's chloride channel function.
    Trouvé P; Le Drévo MA; Kerbiriou M; Friocourt G; Fichou Y; Gillet D; Férec C
    Biochim Biophys Acta; 2007 Oct; 1772(10):1121-33. PubMed ID: 17869070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the restoration of wild-type dynamic behaviour in DeltaF508-CFTR NBD1 by 8-cyclopentyl-1,3-dipropylxanthine.
    Warner DJ; Vadolia MM; Laughton CA; Kerr ID; Doughty SW
    J Mol Graph Model; 2007 Oct; 26(3):691-9. PubMed ID: 17531517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific rescue of cystic fibrosis transmembrane conductance regulator processing mutants using pharmacological chaperones.
    Wang Y; Bartlett MC; Loo TW; Clarke DM
    Mol Pharmacol; 2006 Jul; 70(1):297-302. PubMed ID: 16624886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rescue of DeltaF508-CFTR (cystic fibrosis transmembrane conductance regulator) by curcumin: involvement of the keratin 18 network.
    Lipecka J; Norez C; Bensalem N; Baudouin-Legros M; Planelles G; Becq F; Edelman A; Davezac N
    J Pharmacol Exp Ther; 2006 May; 317(2):500-5. PubMed ID: 16424149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A small molecule that binds to an ATPase domain of Hsc70 promotes membrane trafficking of mutant cystic fibrosis transmembrane conductance regulator.
    Cho HJ; Gee HY; Baek KH; Ko SK; Park JM; Lee H; Kim ND; Lee MG; Shin I
    J Am Chem Soc; 2011 Dec; 133(50):20267-76. PubMed ID: 22074182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Strategic Advances in CFTR Drug Discovery: An Overview.
    Rusnati M; D'Ursi P; Pedemonte N; Urbinati C; Ford RC; Cichero E; Uggeri M; Orro A; Fossa P
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32244346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacogenomics of the cystic fibrosis transmembrane conductance regulator (CFTR) and the cystic fibrosis drug CPX using genome microarray analysis.
    Srivastava M; Eidelman O; Pollard HB
    Mol Med; 1999 Nov; 5(11):753-67. PubMed ID: 10656877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.