These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 29317105)

  • 1. Reduced center of pressure modulation elicits foot placement adjustments, but no additional trunk motion during anteroposterior-perturbed walking.
    Vlutters M; van Asseldonk EHF; van der Kooij H
    J Biomech; 2018 Feb; 68():93-98. PubMed ID: 29317105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking.
    Vlutters M; van Asseldonk EH; van der Kooij H
    J Exp Biol; 2016 May; 219(Pt 10):1514-23. PubMed ID: 26994171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ankle muscle responses during perturbed walking with blocked ankle joints.
    Vlutters M; van Asseldonk EHF; van der Kooij H
    J Neurophysiol; 2019 May; 121(5):1711-1717. PubMed ID: 30864874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the effects of mediolateral surface and foot placement perturbations on balance control and response strategies during walking.
    Brough LG; Neptune RR
    Gait Posture; 2024 Feb; 108():313-319. PubMed ID: 38199090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of human gait stability through foot placement.
    Bruijn SM; van Dieën JH
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29875279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotor stability in able-bodied trunk-flexed gait across uneven ground.
    AminiAghdam S; Müller R; Blickhan R
    Hum Mov Sci; 2018 Dec; 62():176-183. PubMed ID: 30384186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foot Placement Modulation Diminishes for Perturbations Near Foot Contact.
    Vlutters M; Van Asseldonk EHF; van der Kooij H
    Front Bioeng Biotechnol; 2018; 6():48. PubMed ID: 29868570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative evaluation of the major determinants of human gait.
    Lin YC; Gfoehler M; Pandy MG
    J Biomech; 2014 Apr; 47(6):1324-31. PubMed ID: 24582352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of the use of ankle-foot orthoses on thorax, spine, and pelvis kinematics during walking in children with cerebral palsy.
    Swinnen E; Baeyens JP; Van Mulders B; Verspecht J; Degelaen M
    Prosthet Orthot Int; 2018 Apr; 42(2):208-213. PubMed ID: 28486863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lower extremity joint-level responses to pelvis perturbation during human walking.
    Vlutters M; van Asseldonk EHF; van der Kooij H
    Sci Rep; 2018 Oct; 8(1):14621. PubMed ID: 30279499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of anteroposterior perturbations on the control of the center of mass during treadmill walking.
    van den Bogaart M; Bruijn SM; van Dieën JH; Meyns P
    J Biomech; 2020 Apr; 103():109660. PubMed ID: 32171496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ankle muscles drive mediolateral center of pressure control to ensure stable steady state gait.
    van Leeuwen AM; van Dieën JH; Daffertshofer A; Bruijn SM
    Sci Rep; 2021 Nov; 11(1):21481. PubMed ID: 34728667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of whole body balance in the frontal plane during human walking.
    MacKinnon CD; Winter DA
    J Biomech; 1993 Jun; 26(6):633-44. PubMed ID: 8514809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An effective balancing response to lateral perturbations at pelvis level during slow walking requires control in all three planes of motion.
    Matjačić Z; Zadravec M; Olenšek A
    J Biomech; 2017 Jul; 60():79-90. PubMed ID: 28669548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ankle torque control that shifts the center of pressure from heel to toe contributes non-zero sagittal plane angular momentum during human walking.
    Gruben KG; Boehm WL
    J Biomech; 2014 Apr; 47(6):1389-94. PubMed ID: 24524989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel robot for imposing perturbations during overground walking: mechanism, control and normative stepping responses.
    Olenšek A; Zadravec M; Matjačić Z
    J Neuroeng Rehabil; 2016 Jun; 13(1):55. PubMed ID: 27287551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle contributions to mediolateral and anteroposterior foot placement during walking.
    Roelker SA; Kautz SA; Neptune RR
    J Biomech; 2019 Oct; 95():109310. PubMed ID: 31451199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual muscle responses to mediolateral foot placement perturbations during walking.
    Brough LG; Neptune RR
    J Biomech; 2022 Aug; 141():111201. PubMed ID: 35764014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Task-prioritization and balance recovery strategies used by young healthy adults during dual-task walking.
    Small GH; Neptune RR
    Gait Posture; 2022 Jun; 95():115-120. PubMed ID: 35472735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.