These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29317105)

  • 21. A neuromechanical strategy for mediolateral foot placement in walking humans.
    Rankin BL; Buffo SK; Dean JC
    J Neurophysiol; 2014 Jul; 112(2):374-83. PubMed ID: 24790168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The stabilizing properties of foot yaw in human walking.
    Rebula JR; Ojeda LV; Adamczyk PG; Kuo AD
    J Biomech; 2017 Feb; 53():1-8. PubMed ID: 28161109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complementary mechanisms for upright balance during walking.
    Reimann H; Fettrow TD; Thompson ED; Agada P; McFadyen BJ; Jeka JJ
    PLoS One; 2017; 12(2):e0172215. PubMed ID: 28234936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting foot placement for balance through a simple model with swing leg dynamics.
    Zhang L; Fu C
    J Biomech; 2018 Aug; 77():155-162. PubMed ID: 30029774
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Paretic versus non-paretic stepping responses following pelvis perturbations in walking chronic-stage stroke survivors.
    Haarman JAM; Vlutters M; Olde Keizer RACM; van Asseldonk EHF; Buurke JH; Reenalda J; Rietman JS; van der Kooij H
    J Neuroeng Rehabil; 2017 Oct; 14(1):106. PubMed ID: 29029646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Do kinematic metrics of walking balance adapt to perturbed optical flow?
    Thompson JD; Franz JR
    Hum Mov Sci; 2017 Aug; 54():34-40. PubMed ID: 28371662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical response to mediolateral foot-placement perturbations during walking.
    Brough LG; Klute GK; Neptune RR
    J Biomech; 2021 Feb; 116():110213. PubMed ID: 33465580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of narrow base gait on mediolateral balance control in young and older adults.
    Arvin M; Mazaheri M; Hoozemans MJM; Pijnappels M; Burger BJ; Verschueren SMP; van Dieën JH
    J Biomech; 2016 May; 49(7):1264-1267. PubMed ID: 27018156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlations of pelvis state to foot placement do not imply within-step active control.
    Patil NS; Dingwell JB; Cusumano JP
    J Biomech; 2019 Dec; 97():109375. PubMed ID: 31668906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of constraining mediolateral ankle moments and foot placement on the use of the counter-rotation mechanism during walking.
    van den Bogaart M; Bruijn SM; Spildooren J; van Dieën JH; Meyns P
    J Biomech; 2022 May; 136():111073. PubMed ID: 35390646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.
    Kim M; Collins SH
    J Neuroeng Rehabil; 2015 May; 12():43. PubMed ID: 25928176
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinical measures of hip and foot-ankle mechanics as predictors of rearfoot motion and posture.
    Souza TR; Mancini MC; Araújo VL; Carvalhais VO; Ocarino JM; Silva PL; Fonseca ST
    Man Ther; 2014 Oct; 19(5):379-85. PubMed ID: 24268425
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quick foot placement adjustments during gait: direction matters.
    Hoogkamer W; Potocanac Z; Duysens J
    Exp Brain Res; 2015 Dec; 233(12):3349-57. PubMed ID: 26259749
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control strategies for rapid, visually guided adjustments of the foot during continuous walking.
    Barton SL; Matthis JS; Fajen BR
    Exp Brain Res; 2019 Jul; 237(7):1673-1690. PubMed ID: 30976822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of increased passive stiffness of the trunk and hips on balance control during reactive stepping.
    Pretty SP; Armstrong DP; Weaver TB; Laing AC
    Gait Posture; 2019 Jul; 72():51-56. PubMed ID: 31146190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ipsilateral and contralateral foot pronation affect lower limb and trunk biomechanics of individuals with knee osteoarthritis during gait.
    Resende RA; Kirkwood RN; Deluzio KJ; Hassan EA; Fonseca ST
    Clin Biomech (Bristol, Avon); 2016 May; 34():30-7. PubMed ID: 27060435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The comparison of stepping responses following perturbations applied to pelvis during overground and treadmill walking.
    Zadravec M; Olenšek A; Matjačić Z
    Technol Health Care; 2017 Aug; 25(4):781-790. PubMed ID: 28582936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of long-term wearing of high-heeled shoes on the control of the body's center of mass motion in relation to the center of pressure during walking.
    Chien HL; Lu TW; Liu MW
    Gait Posture; 2014 Apr; 39(4):1045-50. PubMed ID: 24508016
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Walking with robot assistance: the influence of body weight support on the trunk and pelvis kinematics.
    Swinnen E; Baeyens JP; Knaepen K; Michielsen M; Hens G; Clijsen R; Goossens M; Buyl R; Meeusen R; Kerckhofs E
    Disabil Rehabil Assist Technol; 2015 May; 10(3):252-7. PubMed ID: 24512196
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of biases in dynamic margins of stability introduced by the use of simplified center of mass estimates during walking and turning.
    Havens KL; Mukherjee T; Finley JM
    Gait Posture; 2018 Jan; 59():162-167. PubMed ID: 29031999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.