BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29317475)

  • 21. Structural basis for the functional differences between type I and type II human methionine aminopeptidases.
    Addlagatta A; Hu X; Liu JO; Matthews BW
    Biochemistry; 2005 Nov; 44(45):14741-9. PubMed ID: 16274222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutations at the S1 sites of methionine aminopeptidases from Escherichia coli and Homo sapiens reveal the residues critical for substrate specificity.
    Li JY; Cui YM; Chen LL; Gu M; Li J; Nan FJ; Ye QZ
    J Biol Chem; 2004 May; 279(20):21128-34. PubMed ID: 14976199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural analysis of bengamide derivatives as inhibitors of methionine aminopeptidases.
    Xu W; Lu JP; Ye QZ
    J Med Chem; 2012 Sep; 55(18):8021-7. PubMed ID: 22913487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amino-terminal extension present in the methionine aminopeptidase type 1c of Mycobacterium tuberculosis is indispensible for its activity.
    Kanudia P; Mittal M; Kumaran S; Chakraborti PK
    BMC Biochem; 2011 Jul; 12():35. PubMed ID: 21729287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox regulation of methionine aminopeptidase 2 activity.
    Chiu J; Wong JW; Hogg PJ
    J Biol Chem; 2014 May; 289(21):15035-43. PubMed ID: 24700462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discovery, identification, and characterization of candidate pharmacodynamic markers of methionine aminopeptidase-2 inhibition.
    Warder SE; Tucker LA; McLoughlin SM; Strelitzer TJ; Meuth JL; Zhang Q; Sheppard GS; Richardson PL; Lesniewski R; Davidsen SK; Bell RL; Rogers JC; Wang J
    J Proteome Res; 2008 Nov; 7(11):4807-20. PubMed ID: 18828628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression of glioblastoma growth and angiogenesis through molecular targeting of methionine aminopeptidase-2.
    Lin M; Zhang X; Jia B; Guan S
    J Neurooncol; 2018 Jan; 136(2):243-254. PubMed ID: 29116484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NAC controls cotranslational N-terminal methionine excision in eukaryotes.
    Gamerdinger M; Jia M; Schloemer R; Rabl L; Jaskolowski M; Khakzar KM; Ulusoy Z; Wallisch A; Jomaa A; Hunaeus G; Scaiola A; Diederichs K; Ban N; Deuerling E
    Science; 2023 Jun; 380(6651):1238-1243. PubMed ID: 37347872
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel Methionine Aminopeptidase 2 Inhibitor M8891 Synergizes with VEGF Receptor Inhibitors to Inhibit Tumor Growth of Renal Cell Carcinoma Models.
    Friese-Hamim M; Ortiz Ruiz MJ; Bogatyrova O; Keil M; Rohdich F; Blume B; Leuthner B; Czauderna F; Hahn D; Jabs J; Jaehrling F; Heinrich T; Kellner R; Chan K; Tong AHY; Wienke D; Moffat J; Blaukat A; Zenke FT
    Mol Cancer Ther; 2024 Feb; 23(2):159-173. PubMed ID: 37940144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Methionine aminopeptidases and angiogenesis.
    Bradshaw RA; Yi E
    Essays Biochem; 2002; 38():65-78. PubMed ID: 12463162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of c-Src nonreceptor tyrosine kinase activity by bengamide A through inhibition of methionine aminopeptidases.
    Hu X; Dang Y; Tenney K; Crews P; Tsai CW; Sixt KM; Cole PA; Liu JO
    Chem Biol; 2007 Jul; 14(7):764-74. PubMed ID: 17656313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The proteomics of N-terminal methionine cleavage.
    Frottin F; Martinez A; Peynot P; Mitra S; Holz RC; Giglione C; Meinnel T
    Mol Cell Proteomics; 2006 Dec; 5(12):2336-49. PubMed ID: 16963780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Positional proteomics reveals differences in N-terminal proteoform stability.
    Gawron D; Ndah E; Gevaert K; Van Damme P
    Mol Syst Biol; 2016 Feb; 12(2):858. PubMed ID: 26893308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances in Bacterial Methionine Aminopeptidase Inhibition.
    Helgren TR; Wangtrakuldee P; Staker BL; Hagen TJ
    Curr Top Med Chem; 2016; 16(4):397-414. PubMed ID: 26268344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. N-terminal methionine excision of proteins creates tertiary destabilizing N-degrons of the Arg/N-end rule pathway.
    Nguyen KT; Kim JM; Park SE; Hwang CS
    J Biol Chem; 2019 Mar; 294(12):4464-4476. PubMed ID: 30674553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A single amino acid difference between archaeal and human type 2 methionine aminopeptidases differentiates their affinity towards ovalicin.
    Bala S; Reddi B; Addlagatta A
    Biochim Biophys Acta Proteins Proteom; 2023 Feb; 1871(2):140881. PubMed ID: 36396098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical shift assignments of zinc finger domain of methionine aminopeptidase 1 (MetAP1) from Homo sapiens.
    Rachineni K; Arya T; Singarapu KK; Addlagatta A; Bharatam J
    Biomol NMR Assign; 2015 Oct; 9(2):351-3. PubMed ID: 25921012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methionine Aminopeptidase 2 as a Potential Therapeutic Target for Human Non-Small-Cell Lung Cancers.
    Shimizu H; Yamagishi S; Chiba H; Ghazizadeh M
    Adv Clin Exp Med; 2016; 25(1):117-28. PubMed ID: 26935506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of potential inhibitors of human methionine aminopeptidase (type II) for cancer therapy: Structure-based virtual screening, ADMET prediction and molecular dynamics studies.
    Weako J; Uba AI; Keskin Ö; Gürsoy A; Yelekçi K
    Comput Biol Chem; 2020 Jun; 86():107244. PubMed ID: 32252002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A single amino acid residue defines the difference in ovalicin sensitivity between type I and II methionine aminopeptidases.
    Brdlik CM; Crews CM
    J Biol Chem; 2004 Mar; 279(10):9475-80. PubMed ID: 14676204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.