These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 29317495)
1. Structural and mechanistic analysis of a β-glycoside phosphorylase identified by screening a metagenomic library. Macdonald SS; Patel A; Larmour VLC; Morgan-Lang C; Hallam SJ; Mark BL; Withers SG J Biol Chem; 2018 Mar; 293(9):3451-3467. PubMed ID: 29317495 [TBL] [Abstract][Full Text] [Related]
2. Development and Application of a High-Throughput Functional Metagenomic Screen for Glycoside Phosphorylases. Macdonald SS; Armstrong Z; Morgan-Lang C; Osowiecka M; Robinson K; Hallam SJ; Withers SG Cell Chem Biol; 2019 Jul; 26(7):1001-1012.e5. PubMed ID: 31080075 [TBL] [Abstract][Full Text] [Related]
3. N-acetylglucosaminidases from CAZy family GH3 are really glycoside phosphorylases, thereby explaining their use of histidine as an acid/base catalyst in place of glutamic acid. Macdonald SS; Blaukopf M; Withers SG J Biol Chem; 2015 Feb; 290(8):4887-4895. PubMed ID: 25533455 [TBL] [Abstract][Full Text] [Related]
4. Identification of Kuhaudomlarp S; Patron NJ; Henrissat B; Rejzek M; Saalbach G; Field RA J Biol Chem; 2018 Feb; 293(8):2865-2876. PubMed ID: 29317507 [TBL] [Abstract][Full Text] [Related]
5. The structure of a GH149 β-(1 → 3) glucan phosphorylase reveals a new surface oligosaccharide binding site and additional domains that are absent in the disaccharide-specific GH94 glucose-β-(1 → 3)-glucose (laminaribiose) phosphorylase. Kuhaudomlarp S; Stevenson CEM; Lawson DM; Field RA Proteins; 2019 Oct; 87(10):885-892. PubMed ID: 31134667 [TBL] [Abstract][Full Text] [Related]
6. Development and application of a screening assay for glycoside phosphorylases. De Groeve MR; Tran GH; Van Hoorebeke A; Stout J; Desmet T; Savvides SN; Soetaert W Anal Biochem; 2010 Jun; 401(1):162-7. PubMed ID: 20188057 [TBL] [Abstract][Full Text] [Related]
8. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes. Nam YW; Nihira T; Arakawa T; Saito Y; Kitaoka M; Nakai H; Fushinobu S J Biol Chem; 2015 Jul; 290(30):18281-92. PubMed ID: 26041776 [TBL] [Abstract][Full Text] [Related]
9. The GH130 Family of Mannoside Phosphorylases Contains Glycoside Hydrolases That Target β-1,2-Mannosidic Linkages in Candida Mannan. Cuskin F; Baslé A; Ladevèze S; Day AM; Gilbert HJ; Davies GJ; Potocki-Véronèse G; Lowe EC J Biol Chem; 2015 Oct; 290(41):25023-33. PubMed ID: 26286752 [TBL] [Abstract][Full Text] [Related]
10. Characterization and crystal structure determination of β-1,2-mannobiose phosphorylase from Listeria innocua. Tsuda T; Nihira T; Chiku K; Suzuki E; Arakawa T; Nishimoto M; Kitaoka M; Nakai H; Fushinobu S FEBS Lett; 2015 Dec; 589(24 Pt B):3816-21. PubMed ID: 26632508 [TBL] [Abstract][Full Text] [Related]
11. Functional characterization of a novel GH94 glycoside phosphorylase, 3-O-β-d-glucopyranosyl β-d-glucuronide phosphorylase, and implication of the metabolic pathway of acidic carbohydrates in Paenibacillus borealis. Isono N; Mizutani E; Hayashida H; Katsuzaki H; Saburi W Biochem Biophys Res Commun; 2022 Oct; 625():60-65. PubMed ID: 35947916 [TBL] [Abstract][Full Text] [Related]
12. Enzymatic synthesis using glycoside phosphorylases. O'Neill EC; Field RA Carbohydr Res; 2015 Feb; 403():23-37. PubMed ID: 25060838 [TBL] [Abstract][Full Text] [Related]
13. Diversity of phosphorylases in glycoside hydrolase families. Kitaoka M Appl Microbiol Biotechnol; 2015 Oct; 99(20):8377-90. PubMed ID: 26293338 [TBL] [Abstract][Full Text] [Related]
14. Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two GH130 subfamilies. Ye Y; Saburi W; Odaka R; Kato K; Sakurai N; Komoda K; Nishimoto M; Kitaoka M; Mori H; Yao M FEBS Lett; 2016 Mar; 590(6):828-37. PubMed ID: 26913570 [TBL] [Abstract][Full Text] [Related]