BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 29317622)

  • 1. Multiple entry pathways within the efflux transporter AcrB contribute to multidrug recognition.
    Zwama M; Yamasaki S; Nakashima R; Sakurai K; Nishino K; Yamaguchi A
    Nat Commun; 2018 Jan; 9(1):124. PubMed ID: 29317622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between AcrB trimer association affinity and efflux activity.
    Ye C; Wang Z; Lu W; Zhong M; Chai Q; Wei Y
    Biochemistry; 2014 Jun; 53(23):3738-46. PubMed ID: 24854514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unidirectional peristaltic movement in multisite drug binding pockets of AcrB from molecular dynamics simulations.
    Feng Z; Hou T; Li Y
    Mol Biosyst; 2012 Oct; 8(10):2699-709. PubMed ID: 22825052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efflux-Mediated Resistance to New Oxazolidinones and Pleuromutilin Derivatives in Escherichia coli with Class Specificities in the Resistance-Nodulation-Cell Division-Type Drug Transport Pathways.
    Schuster S; Vavra M; Kern WV
    Antimicrob Agents Chemother; 2019 Sep; 63(9):. PubMed ID: 31209014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures of Gate Loop Variants of the AcrB Drug Efflux Pump Bound by Erythromycin Substrate.
    Ababou A; Koronakis V
    PLoS One; 2016; 11(7):e0159154. PubMed ID: 27403665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-directed mutagenesis reveals putative substrate binding residues in the Escherichia coli RND efflux pump AcrB.
    Bohnert JA; Schuster S; Seeger MA; Fähnrich E; Pos KM; Kern WV
    J Bacteriol; 2008 Dec; 190(24):8225-9. PubMed ID: 18849422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed disulfide cross-linking shows that cleft flexibility in the periplasmic domain is needed for the multidrug efflux pump AcrB of Escherichia coli.
    Takatsuka Y; Nikaido H
    J Bacteriol; 2007 Dec; 189(23):8677-84. PubMed ID: 17905989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switch-loop flexibility affects transport of large drugs by the promiscuous AcrB multidrug efflux transporter.
    Cha HJ; Müller RT; Pos KM
    Antimicrob Agents Chemother; 2014 Aug; 58(8):4767-72. PubMed ID: 24914123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket.
    Nakashima R; Sakurai K; Yamasaki S; Nishino K; Yamaguchi A
    Nature; 2011 Nov; 480(7378):565-9. PubMed ID: 22121023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into the structural and functional involvement of the gate loop in AcrB export activity.
    Ababou A
    Biochim Biophys Acta Proteins Proteom; 2018 Feb; 1866(2):242-253. PubMed ID: 29126836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbed structural dynamics underlie inhibition and altered efflux of the multidrug resistance pump AcrB.
    Reading E; Ahdash Z; Fais C; Ricci V; Wang-Kan X; Grimsey E; Stone J; Malloci G; Lau AM; Findlay H; Konijnenberg A; Booth PJ; Ruggerone P; Vargiu AV; Piddock LJV; Politis A
    Nat Commun; 2020 Nov; 11(1):5565. PubMed ID: 33149158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of a Substrate-Discriminating Entrance Channel in the Lower Porter Domain of the Multidrug Resistance Efflux Pump AcrB.
    Schuster S; Vavra M; Kern WV
    Antimicrob Agents Chemother; 2016 Jul; 60(7):4315-23. PubMed ID: 27161641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switch Loop Flexibility Affects Substrate Transport of the AcrB Efflux Pump.
    Müller RT; Travers T; Cha HJ; Phillips JL; Gnanakaran S; Pos KM
    J Mol Biol; 2017 Dec; 429(24):3863-3874. PubMed ID: 28987732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allosteric drug transport mechanism of multidrug transporter AcrB.
    Tam HK; Foong WE; Oswald C; Herrmann A; Zeng H; Pos KM
    Nat Commun; 2021 Jun; 12(1):3889. PubMed ID: 34188038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity.
    Blair JM; Bavro VN; Ricci V; Modi N; Cacciotto P; Kleinekathӧfer U; Ruggerone P; Vargiu AV; Baylay AJ; Smith HE; Brandon Y; Galloway D; Piddock LJ
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3511-6. PubMed ID: 25737552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversal of the Drug Binding Pocket Defects of the AcrB Multidrug Efflux Pump Protein of Escherichia coli.
    Soparkar K; Kinana AD; Weeks JW; Morrison KD; Nikaido H; Misra R
    J Bacteriol; 2015 Oct; 197(20):3255-64. PubMed ID: 26240069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalently linked trimer of the AcrB multidrug efflux pump provides support for the functional rotating mechanism.
    Takatsuka Y; Nikaido H
    J Bacteriol; 2009 Mar; 191(6):1729-37. PubMed ID: 19060146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vestibules are part of the substrate path in the multidrug efflux transporter AcrB of Escherichia coli.
    Husain F; Bikhchandani M; Nikaido H
    J Bacteriol; 2011 Oct; 193(20):5847-9. PubMed ID: 21856849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding and Transport of Carboxylated Drugs by the Multidrug Transporter AcrB.
    Tam HK; Malviya VN; Foong WE; Herrmann A; Malloci G; Ruggerone P; Vargiu AV; Pos KM
    J Mol Biol; 2020 Feb; 432(4):861-877. PubMed ID: 31881208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate-dependent transport mechanism in AcrB of multidrug resistant bacteria.
    Jewel Y; Van Dinh Q; Liu J; Dutta P
    Proteins; 2020 Jul; 88(7):853-864. PubMed ID: 31998988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.