These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 29317655)

  • 1. The evolution of substrate discrimination in macrolide antibiotic resistance enzymes.
    Pawlowski AC; Stogios PJ; Koteva K; Skarina T; Evdokimova E; Savchenko A; Wright GD
    Nat Commun; 2018 Jan; 9(1):112. PubMed ID: 29317655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistance phenotypes conferred by macrolide phosphotransferases.
    Chesneau O; Tsvetkova K; Courvalin P
    FEMS Microbiol Lett; 2007 Apr; 269(2):317-22. PubMed ID: 17302923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Basis for Kinase-Mediated Macrolide Antibiotic Resistance.
    Fong DH; Burk DL; Blanchet J; Yan AY; Berghuis AM
    Structure; 2017 May; 25(5):750-761.e5. PubMed ID: 28416110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal Structures of the
    Qi Q; Kuang L; Liao J; Wang X; Zhou Y; Guo L; Jiang Y
    ACS Infect Dis; 2024 Oct; 10(10):3577-3585. PubMed ID: 39255460
    [No Abstract]   [Full Text] [Related]  

  • 5. Large-scale characterization of the macrolide resistome reveals high diversity and several new pathogen-associated genes.
    Lund D; Kieffer N; Parras-Moltó M; Ebmeyer S; Berglund F; Johnning A; Larsson DGJ; Kristiansson E
    Microb Genom; 2022 Jan; 8(1):. PubMed ID: 35084301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism and diversity of the erythromycin esterase family of enzymes.
    Morar M; Pengelly K; Koteva K; Wright GD
    Biochemistry; 2012 Feb; 51(8):1740-51. PubMed ID: 22303981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional insights into esterase-mediated macrolide resistance.
    Zieliński M; Park J; Sleno B; Berghuis AM
    Nat Commun; 2021 Mar; 12(1):1732. PubMed ID: 33741980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a novel macrolide efflux gene, mef(B), found linked to sul3 in porcine Escherichia coli.
    Liu J; Keelan P; Bennett PM; Enne VI
    J Antimicrob Chemother; 2009 Mar; 63(3):423-6. PubMed ID: 19131424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward the rational design of macrolide antibiotics to combat resistance.
    Pavlova A; Parks JM; Oyelere AK; Gumbart JC
    Chem Biol Drug Des; 2017 Nov; 90(5):641-652. PubMed ID: 28419786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional interplay between the ATP binding cassette Msr(D) protein and the membrane facilitator superfamily Mef(E) transporter for macrolide resistance in Escherichia coli.
    Nunez-Samudio V; Chesneau O
    Res Microbiol; 2013 Apr; 164(3):226-35. PubMed ID: 23261969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization and phylogenetic analysis of acquired and intrinsic macrolide phosphotransferases in the Bacillus cereus group.
    Wang C; Sui Z; Leclercq SO; Zhang G; Zhao M; Chen W; Feng J
    Environ Microbiol; 2015 May; 17(5):1560-73. PubMed ID: 25059531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual screening and experimental verification to identify potential inhibitors of the ErmC methyltransferase responsible for bacterial resistance against macrolide antibiotics.
    Feder M; Purta E; Koscinski L; Cubrilo S; Maravic Vlahovicek G; Bujnicki JM
    ChemMedChem; 2008 Feb; 3(2):316-22. PubMed ID: 18038381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study between macrolide regulatory proteins MphR(A) and MphR(E) in ligand identification and DNA binding based on the rapid in vitro detection system.
    Cheng Y; Yang S; Jia M; Zhao L; Hou C; You X; Zhao J; Chen A
    Anal Bioanal Chem; 2016 Feb; 408(6):1623-31. PubMed ID: 26753969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into resistance mechanism of the macrolide biosensor protein MphR(A) binding to macrolide antibiotic erythromycin by molecular dynamics simulation.
    Feng T; Zhang Y; Ding JN; Fan S; Han JG
    J Comput Aided Mol Des; 2015 Dec; 29(12):1123-36. PubMed ID: 26564143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence polarization method to characterize macrolide-ribosome interactions.
    Yan K; Hunt E; Berge J; May E; Copeland RA; Gontarek RR
    Antimicrob Agents Chemother; 2005 Aug; 49(8):3367-72. PubMed ID: 16048949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antipropionibacterial activity of BAL19403, a novel macrolide antibiotic.
    Heller S; Kellenberger L; Shapiro S
    Antimicrob Agents Chemother; 2007 Jun; 51(6):1956-61. PubMed ID: 17387155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Recent advances in the study of macrolide glycosyltransferases].
    Liang DM; Qiao JJ
    Yao Xue Xue Bao; 2007 May; 42(5):455-62. PubMed ID: 17703764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rifampin phosphotransferase is an unusual antibiotic resistance kinase.
    Stogios PJ; Cox G; Spanogiannopoulos P; Pillon MC; Waglechner N; Skarina T; Koteva K; Guarné A; Savchenko A; Wright GD
    Nat Commun; 2016 Apr; 7():11343. PubMed ID: 27103605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precursor directed biosynthesis of an orthogonally functional erythromycin analogue: selectivity in the ribosome macrolide binding pocket.
    Harvey CJ; Puglisi JD; Pande VS; Cane DE; Khosla C
    J Am Chem Soc; 2012 Jul; 134(29):12259-65. PubMed ID: 22741553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemical control of bacterial signal processing using a light-activated erythromycin.
    Gardner L; Zou Y; Mara A; Cropp TA; Deiters A
    Mol Biosyst; 2011 Sep; 7(9):2554-7. PubMed ID: 21785768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.