These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29317753)

  • 21. Effects of the multiscale porosity of decellularized platelet-rich fibrin-loaded zinc-doped magnesium phosphate scaffolds in bone regeneration.
    Rath P; Mandal S; Das P; Sahoo SN; Mandal S; Ghosh D; Nandi SK; Roy M
    J Mater Chem B; 2024 Jun; 12(24):5869-5883. PubMed ID: 38775079
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility.
    Liu W; Zhai D; Huan Z; Wu C; Chang J
    Acta Biomater; 2015 Jul; 21():217-27. PubMed ID: 25890099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradable mesoporous calcium-magnesium silicate-polybutylene succinate scaffolds for osseous tissue engineering.
    Zhang X; Zhang C; Xu W; Zhong B; Lin F; Zhang J; Wang Q; Ji J; Wei J; Zhang Y
    Int J Nanomedicine; 2015; 10():6699-708. PubMed ID: 26604746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro Apatite Mineralization, Degradability, Cytocompatibility and in vivo New Bone Formation and Vascularization of Bioactive Scaffold of Polybutylene Succinate/Magnesium Phosphate/Wheat Protein Ternary Composite.
    Zhao Q; Tang H; Ren L; Wei J
    Int J Nanomedicine; 2020; 15():7279-7295. PubMed ID: 33061381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization and osteogenic evaluation of mesoporous magnesium-calcium silicate/polycaprolactone/polybutylene succinate composite scaffolds fabricated by rapid prototyping.
    Kang YG; Wei J; Kim JE; Wu YR; Lee EJ; Su J; Shin JW
    RSC Adv; 2018 Sep; 8(59):33882-33892. PubMed ID: 35548789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced Capability of Bone Morphogenetic Protein 2-loaded Mesoporous Calcium Silicate Scaffolds to Induce Odontogenic Differentiation of Human Dental Pulp Cells.
    Huang KH; Chen YW; Wang CY; Lin YH; Wu YA; Shie MY; Lin CP
    J Endod; 2018 Nov; 44(11):1677-1685. PubMed ID: 30409449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioactive calcium silicate/poly-ε-caprolactone composite scaffolds 3D printed under mild conditions for bone tissue engineering.
    Lin YH; Chiu YC; Shen YF; Wu YA; Shie MY
    J Mater Sci Mater Med; 2017 Dec; 29(1):11. PubMed ID: 29282550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Osteopontin sequence modified mesoporous calcium silicate scaffolds to promote angiogenesis in bone tissue regeneration.
    Zhu M; He H; Meng Q; Zhu Y; Ye X; Xu N; Yu J
    J Mater Chem B; 2020 Jul; 8(27):5849-5861. PubMed ID: 32530014
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing the biological activity of vaterite-containing β-dicalcium silicate cement by silane coupling agent for biomaterials.
    Zhang Y; Tang J; Li M; Shu Y; Wang F; Cao W; Wu Z
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():1-10. PubMed ID: 30184723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradability, bioactivity, and osteogenesis of biocomposite scaffolds of lithium-containing mesoporous bioglass and mPEG-PLGA-b-PLL copolymer.
    Cai Y; Guo L; Shen H; An X; Jiang H; Ji F; Niu Y
    Int J Nanomedicine; 2015; 10():4125-36. PubMed ID: 26150718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An in vitro evaluation of zinc silicate fortified chitosan scaffolds for bone tissue engineering.
    Jindal A; Mondal T; Bhattacharya J
    Int J Biol Macromol; 2020 Dec; 164():4252-4262. PubMed ID: 32910962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced antibacterial activity of calcium silicate-based hybrid cements for bone repair.
    Lin MC; Chen CC; Wu IT; Ding SJ
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110727. PubMed ID: 32204040
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mesoporous calcium-silicon xerogels with mesopore size and pore volume influence hMSC behaviors by load and sustained release of rhBMP-2.
    Song W; Li X; Qian J; Lv G; Yan Y; Su J; Wei J
    Int J Nanomedicine; 2015; 10():1715-26. PubMed ID: 25784801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnesium-zinc scaffold loaded with tetracycline for tissue engineering application: In vitro cell biology and antibacterial activity assessment.
    Dayaghi E; Bakhsheshi-Rad HR; Hamzah E; Akhavan-Farid A; Ismail AF; Aziz M; Abdolahi E
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():53-65. PubMed ID: 31147024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradability, biocompatibility, and osteogenesis of biocomposite scaffolds containing nano magnesium phosphate and wheat protein both in vitro and in vivo for bone regeneration.
    Xia Y; Zhou P; Wang F; Qiu C; Wang P; Zhang Y; Zhao L; Xu S
    Int J Nanomedicine; 2016; 11():3435-49. PubMed ID: 27555766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the sintering temperature on the mechanical behavior of β-tricalcium phosphate/calcium silicate scaffolds obtained by gelcasting method.
    de Siqueira L; de Paula CG; Gouveia RF; Motisuke M; de Sousa Trichês E
    J Mech Behav Biomed Mater; 2019 Feb; 90():635-643. PubMed ID: 30502672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro physicochemical properties, osteogenic activity, and immunocompatibility of calcium silicate-gelatin bone grafts for load-bearing applications.
    Ding SJ; Shie MY; Wei CK
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):4142-53. PubMed ID: 21942767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies.
    Xu M; Zhai D; Chang J; Wu C
    Acta Biomater; 2014 Jan; 10(1):463-76. PubMed ID: 24071000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. La-Doped mesoporous calcium silicate/chitosan scaffolds for bone tissue engineering.
    Peng XY; Hu M; Liao F; Yang F; Ke QF; Guo YP; Zhu ZH
    Biomater Sci; 2019 Mar; 7(4):1565-1573. PubMed ID: 30688345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanostructured gellan and xanthan hydrogel depot integrated within a baghdadite scaffold augments bone regeneration.
    Sehgal RR; Roohani-Esfahani SI; Zreiqat H; Banerjee R
    J Tissue Eng Regen Med; 2017 Apr; 11(4):1195-1211. PubMed ID: 25846217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.