BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29318156)

  • 1. The Biocontrol Efficacy of
    Lian Q; Zhang J; Gan L; Ma Q; Zong Z; Wang Y
    Biomed Res Int; 2017; 2017():9486794. PubMed ID: 29318156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Identification of endophytic actinomycete St24 tomato plants from and its application in biocontrol of gray mold disease].
    Wang MQ; Ma L; Han JC; Liu HP; He YC
    Ying Yong Sheng Tai Xue Bao; 2012 Sep; 23(9):2529-35. PubMed ID: 23286012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Biocontrol Strain of
    Wang H; Shi Y; Wang D; Yao Z; Wang Y; Liu J; Zhang S; Wang A
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29734678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening and identification of antagonistic actinomycete LA-5 against Botrytis cinerea.
    Li PQ; Feng BZ; Li XX; Hao HY
    Ying Yong Sheng Tai Xue Bao; 2018 Dec; 29(12):4172-4180. PubMed ID: 30584746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological control of Botrytis cinerea on tomato plants using Streptomyces ahygroscopicus strain CK-15.
    Ge BB; Cheng Y; Liu Y; Liu BH; Zhang KC
    Lett Appl Microbiol; 2015 Dec; 61(6):596-602. PubMed ID: 26400053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocontrol agents of Botrytis cinerea tested in climate chambers by making artificial infection on tomato leafs.
    Gielen S; Aerts R; Seels B
    Commun Agric Appl Biol Sci; 2004; 69(4):631-9. PubMed ID: 15756850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An endophytic Streptomyces sp. strain DHV3-2 from diseased root as a potential biocontrol agent against Verticillium dahliae and growth elicitor in tomato (Solanum lycopersicum).
    Cao P; Liu C; Sun P; Fu X; Wang S; Wu F; Wang X
    Antonie Van Leeuwenhoek; 2016 Dec; 109(12):1573-1582. PubMed ID: 27582275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest.
    Shi JF; Sun CQ
    Braz J Microbiol; 2017; 48(4):706-714. PubMed ID: 28645650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers.
    Kefi A; Ben Slimene I; Karkouch I; Rihouey C; Azaeiz S; Bejaoui M; Belaid R; Cosette P; Jouenne T; Limam F
    World J Microbiol Biotechnol; 2015 Dec; 31(12):1967-76. PubMed ID: 26347324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea.
    Gao P; Qin J; Li D; Zhou S
    PLoS One; 2018; 13(1):e0190932. PubMed ID: 29320571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a new Bacillus velezensis as a powerful biocontrol agent against tomato gray mold.
    Li S; Xiao Q; Yang H; Huang J; Li Y
    Pestic Biochem Physiol; 2022 Oct; 187():105199. PubMed ID: 36127070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacillus velezensis FX-6 suppresses the infection of Botrytis cinerea and increases the biomass of tomato plants.
    Li Z; Li J; Yu M; Quandahor P; Tian T; Shen T
    PLoS One; 2023; 18(6):e0286971. PubMed ID: 37319286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents.
    Enya J; Shinohara H; Yoshida S; Tsukiboshi T; Negishi H; Suyama K; Tsushima S
    Microb Ecol; 2007 May; 53(4):524-36. PubMed ID: 17356949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara.
    Goudjal Y; Toumatia O; Yekkour A; Sabaou N; Mathieu F; Zitouni A
    Microbiol Res; 2014 Jan; 169(1):59-65. PubMed ID: 23920229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifungal effect of 405-nm light on Botrytis cinerea.
    Imada K; Tanaka S; Ibaraki Y; Yoshimura K; Ito S
    Lett Appl Microbiol; 2014 Dec; 59(6):670-6. PubMed ID: 25236427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different products for biological control of Botrytis cinerea examined on wounded stem tissue of tomato plants.
    Gielen S; Aerts R; Seels B
    Commun Agric Appl Biol Sci; 2004; 69(4):641-7. PubMed ID: 15756851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic Effect of Combined Application of a New Fungicide Fluopimomide with a Biocontrol Agent
    Ji X; Li J; Meng Z; Zhang S; Dong B; Qiao K
    Plant Dis; 2019 Aug; 103(8):1991-1997. PubMed ID: 31169087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promotion of tomato growth by the volatiles produced by the hypovirulent strain QT5-19 of the plant gray mold fungus Botrytis cinerea.
    Kamaruzzaman M; Wang Z; Wu M; Yang L; Han Y; Li G; Zhang J
    Microbiol Res; 2021 Jun; 247():126731. PubMed ID: 33676312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disease control efficacy of 32,33-didehydroroflamycoin produced by Streptomyces rectiviolaceus strain DY46 against gray mold of tomato fruit.
    Kim JD; Park MY; Jeon BJ; Kim BS
    Sci Rep; 2019 Sep; 9(1):13533. PubMed ID: 31537850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mycoparasitism of Acremonium strictum BCP on Botrytis cinerea, the gray mold pathogen.
    Choi GJ; Kim JC; Jang KS; Cho KY; Kim HT
    J Microbiol Biotechnol; 2008 Jan; 18(1):167-70. PubMed ID: 18239435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.