These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 29318197)

  • 21. Enhanced C30 carotenoid production in Bacillus subtilis by systematic overexpression of MEP pathway genes.
    Xue D; Abdallah II; de Haan IE; Sibbald MJ; Quax WJ
    Appl Microbiol Biotechnol; 2015 Jul; 99(14):5907-15. PubMed ID: 25851715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production.
    Özaydın B; Burd H; Lee TS; Keasling JD
    Metab Eng; 2013 Jan; 15():174-83. PubMed ID: 22918085
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prospects and progress in the production of valuable carotenoids: Insights from metabolic engineering, synthetic biology, and computational approaches.
    Sankari M; Rao PR; Hemachandran H; Pullela PK; Doss C GP; Tayubi IA; Subramanian B; Gothandam KM; Singh P; Ramamoorthy S
    J Biotechnol; 2018 Jan; 266():89-101. PubMed ID: 29247672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diversifying Isoprenoid Platforms
    Carruthers DN; Lee TS
    Front Microbiol; 2021; 12():791089. PubMed ID: 34925299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Opportunities and challenges for the sustainable production of structurally complex diterpenoids in recombinant microbial systems.
    Kemper K; Hirte M; Reinbold M; Fuchs M; Brück T
    Beilstein J Org Chem; 2017; 13():845-854. PubMed ID: 28546842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli.
    Shukal S; Chen X; Zhang C
    Metab Eng; 2019 Sep; 55():170-178. PubMed ID: 31326469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering Robustness of Microbial Cell Factories.
    Gong Z; Nielsen J; Zhou YJ
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28857502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Research progress of engineering microbial cell factories for pigment production.
    Xu S; Gao S; An Y
    Biotechnol Adv; 2023; 65():108150. PubMed ID: 37044266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pathway engineering for functional isoprenoids.
    Misawa N
    Curr Opin Biotechnol; 2011 Oct; 22(5):627-33. PubMed ID: 21310602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels.
    Cheon S; Kim HM; Gustavsson M; Lee SY
    Curr Opin Chem Biol; 2016 Dec; 35():10-21. PubMed ID: 27552559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosynthesis of plant isoprenoids: perspectives for microbial engineering.
    Kirby J; Keasling JD
    Annu Rev Plant Biol; 2009; 60():335-55. PubMed ID: 19575586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Eukaryotic microalgae as hosts for light-driven heterologous isoprenoid production.
    Lauersen KJ
    Planta; 2019 Jan; 249(1):155-180. PubMed ID: 30467629
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing microbial production of biofuels by expanding microbial metabolic pathways.
    Yu P; Chen X; Li P
    Biotechnol Appl Biochem; 2017 Sep; 64(5):606-619. PubMed ID: 27507087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic biology, combinatorial biosynthesis, and chemo‑enzymatic synthesis of isoprenoids.
    Malico AA; Calzini MA; Gayen AK; Williams GJ
    J Ind Microbiol Biotechnol; 2020 Oct; 47(9-10):675-702. PubMed ID: 32880770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advances in synthetic biology for engineering isoprenoid production in yeast.
    Vickers CE; Williams TC; Peng B; Cherry J
    Curr Opin Chem Biol; 2017 Oct; 40():47-56. PubMed ID: 28623722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocysti s sp. PCC 6803.
    Lin PC; Saha R; Zhang F; Pakrasi HB
    Sci Rep; 2017 Dec; 7(1):17503. PubMed ID: 29235513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enabling technologies to advance microbial isoprenoid production.
    Chen Y; Zhou YJ; Siewers V; Nielsen J
    Adv Biochem Eng Biotechnol; 2015; 148():143-60. PubMed ID: 25549781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strategies for the production of biochemicals in bioenergy crops.
    Lin CY; Eudes A
    Biotechnol Biofuels; 2020; 13():71. PubMed ID: 32318116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Artificial Pathway for Isoprenoid Biosynthesis Decoupled from Native Hemiterpene Metabolism.
    Lund S; Hall R; Williams GJ
    ACS Synth Biol; 2019 Feb; 8(2):232-238. PubMed ID: 30648856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Challenges and tackles in metabolic engineering for microbial production of carotenoids.
    Wang C; Zhao S; Shao X; Park JB; Jeong SH; Park HJ; Kwak WJ; Wei G; Kim SW
    Microb Cell Fact; 2019 Mar; 18(1):55. PubMed ID: 30885243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.