These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 29318201)

  • 1. Protein engineering of oxidoreductases utilizing nicotinamide-based coenzymes, with applications in synthetic biology.
    You C; Huang R; Wei X; Zhu Z; Zhang YP
    Synth Syst Biotechnol; 2017 Sep; 2(3):208-218. PubMed ID: 29318201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein Engineering for Nicotinamide Coenzyme Specificity in Oxidoreductases: Attempts and Challenges.
    Chánique AM; Parra LP
    Front Microbiol; 2018; 9():194. PubMed ID: 29491854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial redox coenzyme engineering and applications in biosynthesis.
    Yang H; Jia X; Han Y
    Trends Microbiol; 2022 Apr; 30(4):318-321. PubMed ID: 35135718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes.
    Knaus T; Paul CE; Levy CW; de Vries S; Mutti FG; Hollmann F; Scrutton NS
    J Am Chem Soc; 2016 Jan; 138(3):1033-9. PubMed ID: 26727612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coenzyme Engineering of a Hyperthermophilic 6-Phosphogluconate Dehydrogenase from NADP
    Chen H; Zhu Z; Huang R; Zhang YP
    Sci Rep; 2016 Nov; 6():36311. PubMed ID: 27805055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectivity through discriminatory induced fit enables switching of NAD(P)H coenzyme specificity in Old Yellow Enzyme ene-reductases.
    Iorgu AI; Hedison TM; Hay S; Scrutton NS
    FEBS J; 2019 Aug; 286(16):3117-3128. PubMed ID: 31033202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bipartite recognition and conformational sampling mechanisms for hydride transfer from nicotinamide coenzyme to FMN in pentaerythritol tetranitrate reductase.
    Pudney CR; Hay S; Scrutton NS
    FEBS J; 2009 Sep; 276(17):4780-9. PubMed ID: 19664062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational strategy for altering an enzyme in its cofactor preference to NAD(H) and/or NADP(H).
    Cui D; Zhang L; Jiang S; Yao Z; Gao B; Lin J; Yuan YA; Wei D
    FEBS J; 2015 Jun; 282(12):2339-51. PubMed ID: 25817922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions.
    Liu J; Li H; Zhao G; Caiyin Q; Qiao J
    J Ind Microbiol Biotechnol; 2018 May; 45(5):313-327. PubMed ID: 29582241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput Screening of Coenzyme Preference Change of Thermophilic 6-Phosphogluconate Dehydrogenase from NADP(+) to NAD(.).
    Huang R; Chen H; Zhong C; Kim JE; Zhang YH
    Sci Rep; 2016 Sep; 6():32644. PubMed ID: 27587230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of coenzyme utilization by bovine liver glutamate dehydrogenase: investigations using thionicotinamide analogues of NAD and NADP in a dual wavelength assay.
    Male KB; Storey KB
    Int J Biochem; 1982; 14(12):1083-9. PubMed ID: 7173489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Reorganization of Transition Metal Dichalcogenide Nanoflowers for Efficient Electrochemical Coenzyme Regeneration.
    Williams N; Hahn K; Goodman R; Chen X; Gu J
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):3925-3933. PubMed ID: 36629401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. THE ACTIVITY OF LIVER ALCOHOL DEHYDROGENASE WITH NICOTINAMIDE-ADENINE DINUCLEOTIDE PHOSPHATE AS COENZYME.
    DALZIEL K; DICKINSON FM
    Biochem J; 1965 May; 95(2):311-20. PubMed ID: 14340079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds.
    Weckbecker A; Gröger H; Hummel W
    Adv Biochem Eng Biotechnol; 2010; 120():195-242. PubMed ID: 20182929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and Biochemical Evaluation of Nicotinamide Derivatives as NADH Analogue Coenzymes in Ene Reductase.
    Falcone N; She Z; Syed J; Lough A; Kraatz HB
    Chembiochem; 2019 Mar; 20(6):838-845. PubMed ID: 30500101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coenzyme corona formation on carbon nanotubes leads to disruption of the redox balance in metabolic reactions.
    Hirano A; Kameda T; Wada M; Tanaka T; Kataura H
    Nanoscale; 2023 Feb; 15(5):2340-2353. PubMed ID: 36637062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A High-Throughput Method for Directed Evolution of NAD(P)
    Huang R; Chen H; Upp DM; Lewis JC; Job Zhang YP
    ACS Catal; 2019 Dec; 9(12):11709-11719. PubMed ID: 34765284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coenzyme self-sufficiency system-recent advances in microbial production of high-value chemical phenyllactic acid.
    Li T; Qin Z; Wang D; Xia X; Zhou X; Hu G
    World J Microbiol Biotechnol; 2022 Dec; 39(1):36. PubMed ID: 36472665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selectivity in the binding of NAD(P)+ analogues to NAD- and NADP-dependent pig heart isocitrate dehydrogenases. A nuclear magnetic resonance study.
    Ehrlich RS; Colman RF
    Biochemistry; 1992 Dec; 31(49):12524-31. PubMed ID: 1463739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein motifs involved in coenzyme interaction and enzymatic efficiency in anabaena ferredoxin-NADP+ reductase.
    Peregrina JR; Herguedas B; Hermoso JA; Martínez-Júlvez M; Medina M
    Biochemistry; 2009 Apr; 48(14):3109-19. PubMed ID: 19219975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.