These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29318230)

  • 1. The importance of grand-canonical quantum mechanical methods to describe the effect of electrode potential on the stability of intermediates involved in both electrochemical CO
    Zhang H; Goddard WA; Lu Q; Cheng MJ
    Phys Chem Chem Phys; 2018 Jan; 20(4):2549-2557. PubMed ID: 29318230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring Metalloporphyrin Frameworks for an Efficient Carbon Dioxide Electroreduction: Selectively Stabilizing Key Intermediates with H-Bonding Pockets.
    Wannakao S; Jumpathong W; Kongpatpanich K
    Inorg Chem; 2017 Jun; 56(12):7200-7209. PubMed ID: 28569508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure evolution and durability of Metal-Nitrogen-Carbon (M = Co, Ru, Rh, Pd, Ir) based oxygen evolution reaction electrocatalyst: A theoretical study.
    Zhang X; Xia Z; Li H; Yu S; Wang S; Sun G
    J Colloid Interface Sci; 2023 Jun; 640():170-178. PubMed ID: 36848770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction Mechanisms for the Electrochemical Reduction of CO
    Cheng T; Xiao H; Goddard WA
    J Am Chem Soc; 2016 Oct; 138(42):13802-13805. PubMed ID: 27726392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Faraday efficiency and mechanism of electrochemical surface reactions: CO
    Hussain J; Jónsson H; Skúlason E
    Faraday Discuss; 2016 Dec; 195():619-636. PubMed ID: 27711818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible potentials for steps in methanol and formic acid oxidation to CO2; adsorption energies of intermediates on the ideal electrocatalyst for methanol oxidation and CO2 reduction.
    Anderson AB; Asiri HA
    Phys Chem Chem Phys; 2014 Jun; 16(22):10587-99. PubMed ID: 24741672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double-trap kinetic equation for the oxygen reduction reaction on Pt(111) in acidic media.
    Wang JX; Zhang J; Adzic RR
    J Phys Chem A; 2007 Dec; 111(49):12702-10. PubMed ID: 18052309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface Engineering of Earth-Abundant Transition Metals Using Boron Nitride for Selective Electroreduction of CO
    Hu G; Wu Z; Dai S; Jiang DE
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6694-6700. PubMed ID: 29385799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling CO2 reduction on Pt(111).
    Shi C; O'Grady CP; Peterson AA; Hansen HA; Nørskov JK
    Phys Chem Chem Phys; 2013 May; 15(19):7114-22. PubMed ID: 23552398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grand canonical simulations of electrochemical interfaces in implicit solvation models.
    Hörmann NG; Andreussi O; Marzari N
    J Chem Phys; 2019 Jan; 150(4):041730. PubMed ID: 30709280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Atom Electrocatalysis for Hydrogen Evolution Based on the Constant Charge and Constant Potential Models.
    Tan S; Ji Y; Li Y
    J Phys Chem Lett; 2022 Aug; 13(30):7036-7042. PubMed ID: 35900134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into electrocatalysis.
    Anderson AB
    Phys Chem Chem Phys; 2012 Jan; 14(4):1330-8. PubMed ID: 22159903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional theory-based prediction of the formation constants of complexes of ammonia in aqueous solution: indications of the role of relativistic effects in the solution chemistry of gold(I).
    Hancock RD; Bartolotti LJ
    Inorg Chem; 2005 Oct; 44(20):7175-83. PubMed ID: 16180881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K.
    Cheng T; Xiao H; Goddard WA
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1795-1800. PubMed ID: 28167767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational screening of transition metal/p-block hybrid electrocatalysts for CO
    Ananthaneni S; Rankin RB
    J Comput Chem; 2020 May; 41(14):1384-1394. PubMed ID: 32100900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trends in water-promoted oxygen dissociation on the transition metal surfaces from first principles.
    Yan M; Huang ZQ; Zhang Y; Chang CR
    Phys Chem Chem Phys; 2017 Jan; 19(3):2364-2371. PubMed ID: 28054681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO adsorption on pure and binary-alloy gold clusters: a quantum chemical study.
    Joshi AM; Tucker MH; Delgass WN; Thomson KT
    J Chem Phys; 2006 Nov; 125(19):194707. PubMed ID: 17129150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational Design and Effective Control of Gold-Based Bimetallic Electrocatalyst for Boosting CO
    Guo C; Zhang T; Lu X; Wu CL
    ChemSusChem; 2021 Jul; 14(13):2731-2739. PubMed ID: 33931946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of oxygen reduction bimetallic catalysts: ab-initio-derived thermodynamic guidelines.
    Wang Y; Balbuena PB
    J Phys Chem B; 2005 Oct; 109(40):18902-6. PubMed ID: 16853433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.