These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 29318235)

  • 1. The deformation of hydrogel microspheres at the air/water interface.
    Minato H; Murai M; Watanabe T; Matsui S; Takizawa M; Kureha T; Suzuki D
    Chem Commun (Camb); 2018 Jan; 54(8):932-935. PubMed ID: 29318235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Organization of Soft Hydrogel Microspheres during the Evaporation of Aqueous Droplets.
    Takizawa M; Sazuka Y; Horigome K; Sakurai Y; Matsui S; Minato H; Kureha T; Suzuki D
    Langmuir; 2018 Apr; 34(15):4515-4525. PubMed ID: 29558799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Charge Groups Immobilized in Hydrogel Microspheres during the Evaporation of Aqueous Sessile Droplets.
    Minato H; Takizawa M; Hiroshige S; Suzuki D
    Langmuir; 2019 Aug; 35(32):10412-10423. PubMed ID: 31299157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Thermoresponsive Decanano-sized Domains in Thermoresponsive Hydrogel Microspheres Revealed by Temperature-Controlled High-Speed Atomic Force Microscopy.
    Nishizawa Y; Matsui S; Urayama K; Kureha T; Shibayama M; Uchihashi T; Suzuki D
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8809-8813. PubMed ID: 31056848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of oppositely charged microgels at the air/water interface.
    Suzuki D; Horigome K
    J Phys Chem B; 2013 Aug; 117(30):9073-82. PubMed ID: 23870034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructure and thermoresponsiveness of poly(
    Nishizawa Y; Minato H; Inui T; Saito I; Kureha T; Shibayama M; Uchihashi T; Suzuki D
    RSC Adv; 2021 Apr; 11(22):13130-13137. PubMed ID: 35423887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drying mechanism of poly(N-isopropylacrylamide) microgel dispersions.
    Horigome K; Suzuki D
    Langmuir; 2012 Sep; 28(36):12962-70. PubMed ID: 22916861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogel Microellipsoids that Form Robust String-Like Assemblies at the Air/Water Interface.
    Honda K; Sazuka Y; Iizuka K; Matsui S; Uchihashi T; Kureha T; Shibayama M; Watanabe T; Suzuki D
    Angew Chem Int Ed Engl; 2019 May; 58(22):7294-7298. PubMed ID: 30957363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructures, Thermoresponsiveness, and Assembly Mechanism of Hydrogel Microspheres during Aqueous Free-Radical Precipitation Polymerization.
    Nishizawa Y; Minato H; Inui T; Uchihashi T; Suzuki D
    Langmuir; 2021 Jan; 37(1):151-159. PubMed ID: 33355463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast Adsorption of Soft Hydrogel Microspheres on Solid Surfaces in Aqueous Solution.
    Matsui S; Kureha T; Hiroshige S; Shibata M; Uchihashi T; Suzuki D
    Angew Chem Int Ed Engl; 2017 Sep; 56(40):12146-12149. PubMed ID: 28736889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled Synthesis of Uniform, Micrometer-Sized Ruthenium-Functionalized Poly(N-Isopropylacrylamide) Gel Particles and their Application to the Catalysis of the Belousov-Zhabotinsky Reaction.
    Hu Y; Pérez-Mercader J
    Macromol Rapid Commun; 2017 Feb; 38(3):. PubMed ID: 28004454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raspberry-shaped composite microgel synthesis by seeded emulsion polymerization with hydrogel particles.
    Suzuki D; Kobayashi C
    Langmuir; 2014 Jun; 30(24):7085-92. PubMed ID: 24881767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seeded Emulsion Polymerization of Styrene in the Presence of Water-Swollen Hydrogel Microspheres.
    Watanabe T; Song C; Murata K; Kureha T; Suzuki D
    Langmuir; 2018 Jul; 34(29):8571-8580. PubMed ID: 29957963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A confocal microscopy study of micron-sized poly(N-isopropylacrylamide) microgel particles at the oil-water interface and anisotopic flattening of highly swollen microgel.
    Kwok MH; Ngai T
    J Colloid Interface Sci; 2016 Jan; 461():409-418. PubMed ID: 26414423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH and Ion-Triggered Volume Response of Anionic Hydrogel Microspheres.
    Eichenbaum GM; Kiser PF; Simon SA; Needham D
    Macromolecules; 1998 Jul; 31(15):5084-93. PubMed ID: 9680449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multilayered composite microgels synthesized by surfactant-free seeded polymerization.
    Suzuki D; Yamagata T; Murai M
    Langmuir; 2013 Aug; 29(33):10579-85. PubMed ID: 23895302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmentally responsive particles: from superhydrophobic particle films to water-dispersible microspheres.
    Rodriguez-Hernandez J; Muñoz-Bonilla A; Bousquet A; Ibarboure E; Papon E
    Langmuir; 2010 Dec; 26(24):18617-20. PubMed ID: 21080668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microgels at the Water/Oil Interface: In Situ Observation of Structural Aging and Two-Dimensional Magnetic Bead Microrheology.
    Huang S; Gawlitza K; von Klitzing R; Gilson L; Nowak J; Odenbach S; Steffen W; Auernhammer GK
    Langmuir; 2016 Jan; 32(3):712-22. PubMed ID: 26704516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porosity-Tuned Chitosan-Polyacrylamide Hydrogel Microspheres for Improved Protein Conjugation.
    Jung S; Abel JH; Starger JL; Yi H
    Biomacromolecules; 2016 Jul; 17(7):2427-36. PubMed ID: 27351270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The compression of deformed microgels at an air/water interface.
    Kawamoto T; Yanagi K; Nishizawa Y; Minato H; Suzuki D
    Chem Commun (Camb); 2023 Nov; 59(89):13289-13292. PubMed ID: 37830179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.