These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 29318238)
1. Approximate DFT-based methods for generating diabatic states and calculating electronic couplings: models of two and more states. Yang CH; Yam C; Wang H Phys Chem Chem Phys; 2018 Jan; 20(4):2571-2584. PubMed ID: 29318238 [TBL] [Abstract][Full Text] [Related]
2. Extracting electron transfer coupling elements from constrained density functional theory. Wu Q; Van Voorhis T J Chem Phys; 2006 Oct; 125(16):164105. PubMed ID: 17092061 [TBL] [Abstract][Full Text] [Related]
3. Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set. Oberhofer H; Blumberger J J Chem Phys; 2010 Dec; 133(24):244105. PubMed ID: 21197974 [TBL] [Abstract][Full Text] [Related]
4. Block-Localized Density Functional Theory (BLDFT), Diabatic Coupling, and Their Use in Valence Bond Theory for Representing Reactive Potential Energy Surfaces. Cembran A; Song L; Mo Y; Gao J J Chem Theory Comput; 2009 Oct; 5(10):2702-2716. PubMed ID: 20228960 [TBL] [Abstract][Full Text] [Related]
5. Calculating Electron-Transfer Coupling with Density Functional Theory: The Long-Range-Corrected Density Functionals. You ZQ; Hung YC; Hsu CP J Phys Chem B; 2015 Jun; 119(24):7480-90. PubMed ID: 25599406 [TBL] [Abstract][Full Text] [Related]
6. PyCDFT: A Python package for constrained density functional theory. Ma H; Wang W; Kim S; Cheng MH; Govoni M; Galli G J Comput Chem; 2020 Jul; 41(20):1859-1867. PubMed ID: 32497321 [TBL] [Abstract][Full Text] [Related]
7. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level. Gillet N; Berstis L; Wu X; Gajdos F; Heck A; de la Lande A; Blumberger J; Elstner M J Chem Theory Comput; 2016 Oct; 12(10):4793-4805. PubMed ID: 27611912 [TBL] [Abstract][Full Text] [Related]
8. The requisite electronic structure theory to describe photoexcited nonadiabatic dynamics: nonadiabatic derivative couplings and diabatic electronic couplings. Subotnik JE; Alguire EC; Ou Q; Landry BR; Fatehi S Acc Chem Res; 2015 May; 48(5):1340-50. PubMed ID: 25932499 [TBL] [Abstract][Full Text] [Related]
9. Electron transfer within a reaction path model calibrated by constrained DFT calculations: application to mixed-valence organic compounds. Mangaud E; de la Lande A; Meier C; Desouter-Lecomte M Phys Chem Chem Phys; 2015 Dec; 17(46):30889-903. PubMed ID: 26041466 [TBL] [Abstract][Full Text] [Related]
10. Extended Mulliken-Hush Method with Applications to the Theoretical Study of Electron Transfer. Ren M; Zhang L; Jiao Y; Chen Z; Wu W J Chem Theory Comput; 2021 Nov; 17(11):6861-6875. PubMed ID: 34605634 [TBL] [Abstract][Full Text] [Related]
11. Electronic couplings for molecular charge transfer: benchmarking CDFT, FODFT and FODFTB against high-level ab initio calculations. II. Kubas A; Gajdos F; Heck A; Oberhofer H; Elstner M; Blumberger J Phys Chem Chem Phys; 2015 Jun; 17(22):14342-54. PubMed ID: 25573447 [TBL] [Abstract][Full Text] [Related]
12. A diabatic representation including both valence nonadiabatic interactions and spin-orbit effects for reaction dynamics. Valero R; Truhlar DG J Phys Chem A; 2007 Sep; 111(35):8536-51. PubMed ID: 17691756 [TBL] [Abstract][Full Text] [Related]
13. Critical analysis of fragment-orbital DFT schemes for the calculation of electronic coupling values. Schober C; Reuter K; Oberhofer H J Chem Phys; 2016 Feb; 144(5):054103. PubMed ID: 26851904 [TBL] [Abstract][Full Text] [Related]
14. MS-CASPT2 study of hole transfer in guanine-indole complexes using the generalized Mulliken-Hush method: effective two-state treatment. Butchosa C; Simon S; Blancafort L; Voityuk A J Phys Chem B; 2012 Jul; 116(27):7815-20. PubMed ID: 22702242 [TBL] [Abstract][Full Text] [Related]
15. Propagative block diagonalization diabatization of DFT/MRCI electronic states. Neville SP; Seidu I; Schuurman MS J Chem Phys; 2020 Mar; 152(11):114110. PubMed ID: 32199420 [TBL] [Abstract][Full Text] [Related]
16. Diabatization Schemes for Generating Charge-Localized Electron-Proton Vibronic States in Proton-Coupled Electron Transfer Systems. Sirjoosingh A; Hammes-Schiffer S J Chem Theory Comput; 2011 Sep; 7(9):2831-41. PubMed ID: 26605474 [TBL] [Abstract][Full Text] [Related]
17. Computational construction of the electronic Hamiltonian for photoinduced electron transfer and Redfield propagation. Storm FE; Rasmussen MH; Mikkelsen KV; Hansen T Phys Chem Chem Phys; 2019 Aug; 21(31):17366-17377. PubMed ID: 31355839 [TBL] [Abstract][Full Text] [Related]
18. Calculation of nonadiabatic couplings with restricted open-shell Kohn-Sham density-functional theory. Billeter SR; Egli D J Chem Phys; 2006 Dec; 125(22):224103. PubMed ID: 17176130 [TBL] [Abstract][Full Text] [Related]
19. A multi-state fragment charge difference approach for diabatic states in electron transfer: extension and automation. Yang CH; Hsu CP J Chem Phys; 2013 Oct; 139(15):154104. PubMed ID: 24160497 [TBL] [Abstract][Full Text] [Related]
20. Communication: CDFT-CI couplings can be unreliable when there is fractional charge transfer. Mavros MG; Van Voorhis T J Chem Phys; 2015 Dec; 143(23):231102. PubMed ID: 26696039 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]