BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29318252)

  • 1. Spatial requirement for PAMO for transformation of non-native linear substrates.
    Carvalho ATP; Dourado DFAR; Skvortsov T; de Abreu M; Ferguson LJ; Quinn DJ; Moody TS; Huang M
    Phys Chem Chem Phys; 2018 Jan; 20(4):2558-2570. PubMed ID: 29318252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extending the substrate scope of a Baeyer-Villiger monooxygenase by multiple-site mutagenesis.
    Dudek HM; Fink MJ; Shivange AV; Dennig A; Mihovilovic MD; Schwaneberg U; Fraaije MW
    Appl Microbiol Biotechnol; 2014 May; 98(9):4009-20. PubMed ID: 24247989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic mechanism of phenylacetone monooxygenases for non-native linear substrates.
    Carvalho ATP; Dourado DFAR; Skvortsov T; de Abreu M; Ferguson LJ; Quinn DJ; Moody TS; Huang M
    Phys Chem Chem Phys; 2017 Oct; 19(39):26851-26861. PubMed ID: 28951930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the substrate binding site of phenylacetone monooxygenase from Thermobifida fusca by mutational analysis.
    Dudek HM; de Gonzalo G; Pazmiño DE; Stepniak P; Wyrwicz LS; Rychlewski L; Fraaije MW
    Appl Environ Microbiol; 2011 Aug; 77(16):5730-8. PubMed ID: 21724896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a new Baeyer-Villiger monooxygenase and conversion to a solely N-or S-oxidizing enzyme by a single R292 mutation.
    Catucci G; Zgrablic I; Lanciani F; Valetti F; Minerdi D; Ballou DP; Gilardi G; Sadeghi SJ
    Biochim Biophys Acta; 2016 Sep; 1864(9):1177-1187. PubMed ID: 27344049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laboratory evolution of robust and enantioselective Baeyer-Villiger monooxygenases for asymmetric catalysis.
    Reetz MT; Wu S
    J Am Chem Soc; 2009 Oct; 131(42):15424-32. PubMed ID: 19807086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed evolution of phenylacetone monooxygenase as an active catalyst for the Baeyer-Villiger conversion of cyclohexanone to caprolactone.
    Parra LP; Acevedo JP; Reetz MT
    Biotechnol Bioeng; 2015 Jul; 112(7):1354-64. PubMed ID: 25675885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein engineering of stereoselective Baeyer-Villiger monooxygenases.
    Zhang ZG; Parra LP; Reetz MT
    Chemistry; 2012 Aug; 18(33):10160-72. PubMed ID: 22807240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switch in Cofactor Specificity of a Baeyer-Villiger Monooxygenase.
    Beier A; Bordewick S; Genz M; Schmidt S; van den Bergh T; Peters C; Joosten HJ; Bornscheuer UT
    Chembiochem; 2016 Dec; 17(24):2312-2315. PubMed ID: 27735116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A stepwise approach for the reproducible optimization of PAMO expression in Escherichia coli for whole-cell biocatalysis.
    van Bloois E; Dudek HM; Duetz WA; Fraaije MW
    BMC Biotechnol; 2012 Jun; 12():31. PubMed ID: 22720747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of the biocatalytic properties of one phenylacetone monooxygenase mutant in hydrophilic organic solvents.
    de Gonzalo G; Rodríguez C; Rioz-Martínez A; Gotor V
    Enzyme Microb Technol; 2012 Jan; 50(1):43-9. PubMed ID: 22133439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the coenzyme specificity of phenylacetone monooxygenase from Thermobifida fusca.
    Dudek HM; Torres Pazmiño DE; Rodríguez C; de Gonzalo G; Gotor V; Fraaije MW
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1135-43. PubMed ID: 20703875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blending Baeyer-Villiger monooxygenases: using a robust BVMO as a scaffold for creating chimeric enzymes with novel catalytic properties.
    van Beek HL; de Gonzalo G; Fraaije MW
    Chem Commun (Camb); 2012 Apr; 48(27):3288-90. PubMed ID: 22286124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and Catalytic Characterization of a Fungal Baeyer-Villiger Monooxygenase.
    Ferroni FM; Tolmie C; Smit MS; Opperman DJ
    PLoS One; 2016; 11(7):e0160186. PubMed ID: 27472055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic mechanism of phenylacetone monooxygenase from Thermobifida fusca.
    Torres Pazmiño DE; Baas BJ; Janssen DB; Fraaije MW
    Biochemistry; 2008 Apr; 47(13):4082-93. PubMed ID: 18321069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of Two Native Baeyer-Villiger Monooxygenases for Asymmetric Synthesis of Bulky Chiral Sulfoxides.
    Zhang Y; Liu F; Xu N; Wu YQ; Zheng YC; Zhao Q; Lin G; Yu HL; Xu JH
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29752270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Synthesis of Methyl 3-Acetoxypropionate by a Newly Identified Baeyer-Villiger Monooxygenase.
    Liu YY; Li CX; Xu JH; Zheng GW
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of His
    Parshin PD; Pometun AA; Martysuk UA; Kleymenov SY; Atroshenko DL; Pometun EV; Savin SS; Tishkov VI
    Biochemistry (Mosc); 2020 May; 85(5):575-582. PubMed ID: 32571187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic resolution of aliphatic acyclic beta-hydroxyketones by recombinant whole-cell Baeyer-Villiger monooxygenases--formation of enantiocomplementary regioisomeric esters.
    Rehdorf J; Lengar A; Bornscheuer UT; Mihovilovic MD
    Bioorg Med Chem Lett; 2009 Jul; 19(14):3739-43. PubMed ID: 19487125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induced allostery in the directed evolution of an enantioselective Baeyer-Villiger monooxygenase.
    Wu S; Acevedo JP; Reetz MT
    Proc Natl Acad Sci U S A; 2010 Feb; 107(7):2775-80. PubMed ID: 20133612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.