These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29318333)

  • 21. Tn5/7-lux: a versatile tool for the identification and capture of promoters in gram-negative bacteria.
    Bruckbauer ST; Kvitko BH; Karkhoff-Schweizer RR; Schweizer HP
    BMC Microbiol; 2015 Feb; 15(1):17. PubMed ID: 25648327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel toxin-antitoxin system composed of serine protease and AAA-ATPase homologues determines the high level of stability and incompatibility of the tumor-inducing plasmid pTiC58.
    Yamamoto S; Kiyokawa K; Tanaka K; Moriguchi K; Suzuki K
    J Bacteriol; 2009 Jul; 191(14):4656-66. PubMed ID: 19447904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolutionary classification of tumor- and root-inducing plasmids based on T-DNAs and virulence regions.
    Nabi N; Ben Hafsa A; Gaillard V; Nesme X; Chaouachi M; Vial L
    Mol Phylogenet Evol; 2022 Apr; 169():107388. PubMed ID: 35017066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The development of plasmid-free strains of Agrobacterium tumefaciens by using incompatibility with a Rhizobium meliloti plasmid to eliminate pAtC58.
    Hynes MF; Simon R; Pühler A
    Plasmid; 1985 Mar; 13(2):99-105. PubMed ID: 4001194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The repAC replication system of the Rhizobium leguminosarum pRL7 plasmid is functional: implications regarding the origin and evolution of repABC plasmids.
    Pérez-Segura G; Pérez-Oseguera A; Cevallos MA
    Plasmid; 2013 Jan; 69(1):49-57. PubMed ID: 22975386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Composite 259-kb Plasmid of
    Bartling P; Brinkmann H; Bunk B; Overmann J; Göker M; Petersen J
    Front Microbiol; 2017; 8():1787. PubMed ID: 28983283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new type IV secretion system promotes conjugal transfer in Agrobacterium tumefaciens.
    Chen L; Chen Y; Wood DW; Nester EW
    J Bacteriol; 2002 Sep; 184(17):4838-45. PubMed ID: 12169609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome engineering of Agrobacterium tumefaciens using the lambda Red recombination system.
    Hu S; Fu J; Huang F; Ding X; Stewart AF; Xia L; Zhang Y
    Appl Microbiol Biotechnol; 2014 Mar; 98(5):2165-72. PubMed ID: 24297480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intergeneric transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of the Ti plasmids of Agrobacterium tumefaciens.
    Van Haute E; Joos H; Maes M; Warren G; Van Montagu M; Schell J
    EMBO J; 1983; 2(3):411-7. PubMed ID: 11894957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic structure of Agrobacterium tumefaciens Ti plasmids.
    Fortin C; Marquis C; Nester EW; Dion P
    J Bacteriol; 1993 Aug; 175(15):4790-9. PubMed ID: 8335635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing.
    Khan SR; Gaines J; Roop RM; Farrand SK
    Appl Environ Microbiol; 2008 Aug; 74(16):5053-62. PubMed ID: 18606801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complete Sequence of Succinamopine Ti-Plasmid pTiEU6 Reveals Its Evolutionary Relatedness with Nopaline-Type Ti-Plasmids.
    Shao S; van Heusden GPH; Hooykaas PJJ
    Genome Biol Evol; 2019 Sep; 11(9):2480-2491. PubMed ID: 31386108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mapping and genetic organization of pTiChry5, a novel Ti plasmid from a highly virulent Agrobacterium tumefaciens strain.
    Kovács LG; Pueppke SG
    Mol Gen Genet; 1994 Feb; 242(3):327-36. PubMed ID: 8107681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Convergent evolution of Amadori opine catabolic systems in plasmids of Agrobacterium tumefaciens.
    Baek CH; Farrand SK; Lee KE; Park DK; Lee JK; Kim KS
    J Bacteriol; 2003 Jan; 185(2):513-24. PubMed ID: 12511498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Co-dependent and Interdigitated: Dual Quorum Sensing Systems Regulate Conjugative Transfer of the Ti Plasmid and the At Megaplasmid in
    Barton IS; Eagan JL; Nieves-Otero PA; Reynolds IP; Platt TG; Fuqua C
    Front Microbiol; 2020; 11():605896. PubMed ID: 33552018
    [TBL] [Abstract][Full Text] [Related]  

  • 36. luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258.
    Corbisier P; Ji G; Nuyts G; Mergeay M; Silver S
    FEMS Microbiol Lett; 1993 Jun; 110(2):231-8. PubMed ID: 8349095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptional regulation of lux genes transferred into Vibrio harveyi.
    Miyamoto CM; Meighen EA; Graham AF
    J Bacteriol; 1990 Apr; 172(4):2046-54. PubMed ID: 2180915
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Counter-transcribed RNAs of Rhizobium leguminosarum repABC plasmids exert incompatibility effects only when highly expressed.
    Yip CB; Ding H; Hynes MF
    Plasmid; 2015 Mar; 78():37-47. PubMed ID: 25530178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of a megaplasmid centromere reveals genetic structural diversity within the repABC family of basic replicons.
    MacLellan SR; Zaheer R; Sartor AL; MacLean AM; Finan TM
    Mol Microbiol; 2006 Mar; 59(5):1559-75. PubMed ID: 16468995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the Agrobacterium octopine-cucumopine catabolic plasmid pAtAg67.
    Hooykaas MJG; Shao S; Hooykaas PJJ
    Plasmid; 2022 May; 121():102629. PubMed ID: 35378144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.