These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 29318635)

  • 1. Plant evolution: landmarks on the path to terrestrial life.
    de Vries J; Archibald JM
    New Phytol; 2018 Mar; 217(4):1428-1434. PubMed ID: 29318635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embryophyte stress signaling evolved in the algal progenitors of land plants.
    de Vries J; Curtis BA; Gould SB; Archibald JM
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):E3471-E3480. PubMed ID: 29581286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evo-physio: on stress responses and the earliest land plants.
    Fürst-Jansen JMR; de Vries S; de Vries J
    J Exp Bot; 2020 Jun; 71(11):3254-3269. PubMed ID: 31922568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Into another dimension: how streptophyte algae gained morphological complexity.
    Buschmann H
    J Exp Bot; 2020 Jun; 71(11):3279-3286. PubMed ID: 32270175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crossroads in the evolution of plant specialized metabolism.
    Rieseberg TP; Dadras A; Fürst-Jansen JMR; Dhabalia Ashok A; Darienko T; de Vries S; Irisarri I; de Vries J
    Semin Cell Dev Biol; 2023 Jan; 134():37-58. PubMed ID: 35292191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Streptophyte Terrestrialization in Light of Plastid Evolution.
    de Vries J; Stanton A; Archibald JM; Gould SB
    Trends Plant Sci; 2016 Jun; 21(6):467-476. PubMed ID: 26895731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Streptophyte algae and the origin of embryophytes.
    Becker B; Marin B
    Ann Bot; 2009 May; 103(7):999-1004. PubMed ID: 19273476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomes of Subaerial Zygnematophyceae Provide Insights into Land Plant Evolution.
    Cheng S; Xian W; Fu Y; Marin B; Keller J; Wu T; Sun W; Li X; Xu Y; Zhang Y; Wittek S; Reder T; Günther G; Gontcharov A; Wang S; Li L; Liu X; Wang J; Yang H; Xu X; Delaux PM; Melkonian B; Wong GK; Melkonian M
    Cell; 2019 Nov; 179(5):1057-1067.e14. PubMed ID: 31730849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A phylogenomically informed five-order system for the closest relatives of land plants.
    Hess S; Williams SK; Busch A; Irisarri I; Delwiche CF; de Vries S; Darienko T; Roger AJ; Archibald JM; Buschmann H; von Schwartzenberg K; de Vries J
    Curr Biol; 2022 Oct; 32(20):4473-4482.e7. PubMed ID: 36055238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The greening ashore.
    Schreiber M; Rensing SA; Gould SB
    Trends Plant Sci; 2022 Sep; 27(9):847-857. PubMed ID: 35739050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Evolutionary Origin of a Terrestrial Flora.
    Delwiche CF; Cooper ED
    Curr Biol; 2015 Oct; 25(19):R899-910. PubMed ID: 26439353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Chloroplast Genome Analyses of Streptophyte Green Algae Uncover Major Structural Alterations in the Klebsormidiophyceae, Coleochaetophyceae and Zygnematophyceae.
    Lemieux C; Otis C; Turmel M
    Front Plant Sci; 2016; 7():697. PubMed ID: 27252715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugar composition of the pectic polysaccharides of charophytes, the closest algal relatives of land-plants: presence of 3-O-methyl-D-galactose residues.
    O'Rourke C; Gregson T; Murray L; Sadler IH; Fry SC
    Ann Bot; 2015 Aug; 116(2):225-36. PubMed ID: 26113633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Draparnaldia: a chlorophyte model for comparative analyses of plant terrestrialization.
    Caisová L
    J Exp Bot; 2020 Jun; 71(11):3305-3313. PubMed ID: 32100007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Desiccation tolerance in streptophyte algae and the algae to land plant transition: evolution of LEA and MIP protein families within the Viridiplantae.
    Becker B; Feng X; Yin Y; Holzinger A
    J Exp Bot; 2020 Jun; 71(11):3270-3278. PubMed ID: 32107542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why Plants Were Terrestrial from the Beginning.
    Harholt J; Moestrup Ø; Ulvskov P
    Trends Plant Sci; 2016 Feb; 21(2):96-101. PubMed ID: 26706443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat stress response in the closest algal relatives of land plants reveals conserved stress signaling circuits.
    de Vries J; de Vries S; Curtis BA; Zhou H; Penny S; Feussner K; Pinto DM; Steinert M; Cohen AM; von Schwartzenberg K; Archibald JM
    Plant J; 2020 Aug; 103(3):1025-1048. PubMed ID: 32333477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of land plants: do conjugating green algae hold the key?
    Wodniok S; Brinkmann H; Glöckner G; Heidel AJ; Philippe H; Melkonian M; Becker B
    BMC Evol Biol; 2011 Apr; 11():104. PubMed ID: 21501468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryogenian Glacial Habitats as a Plant Terrestrialisation Cradle - The Origin of the Anydrophytes and Zygnematophyceae Split.
    Žárský J; Žárský V; Hanáček M; Žárský V
    Front Plant Sci; 2021; 12():735020. PubMed ID: 35154170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RHO of plant signaling was established early in streptophyte evolution.
    Mulvey H; Dolan L
    Curr Biol; 2023 Dec; 33(24):5515-5525.e4. PubMed ID: 38039969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.