These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Incorporating knowledge-based biases into an energy-based side-chain modeling method: application to comparative modeling of protein structure. Mendes J; Nagarajaram HA; Soares CM; Blundell TL; Carrondo MA Biopolymers; 2001 Aug; 59(2):72-86. PubMed ID: 11373721 [TBL] [Abstract][Full Text] [Related]
5. Toward the Accuracy and Speed of Protein Side-Chain Packing: A Systematic Study on Rotamer Libraries. Huang X; Pearce R; Zhang Y J Chem Inf Model; 2020 Jan; 60(1):410-420. PubMed ID: 31851497 [TBL] [Abstract][Full Text] [Related]
6. Improved side-chain prediction accuracy using an ab initio potential energy function and a very large rotamer library. Peterson RW; Dutton PL; Wand AJ Protein Sci; 2004 Mar; 13(3):735-51. PubMed ID: 14978310 [TBL] [Abstract][Full Text] [Related]
7. IRECS: a new algorithm for the selection of most probable ensembles of side-chain conformations in protein models. Hartmann C; Antes I; Lengauer T Protein Sci; 2007 Jul; 16(7):1294-307. PubMed ID: 17567749 [TBL] [Abstract][Full Text] [Related]
8. Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. Bower MJ; Cohen FE; Dunbrack RL J Mol Biol; 1997 Apr; 267(5):1268-82. PubMed ID: 9150411 [TBL] [Abstract][Full Text] [Related]
9. Backbone dependency further improves side chain prediction efficiency in the Energy-based Conformer Library (bEBL). Subramaniam S; Senes A Proteins; 2014 Nov; 82(11):3177-87. PubMed ID: 25212195 [TBL] [Abstract][Full Text] [Related]
10. Modeling side-chain conformation for homologous proteins using an energy-based rotamer search. Wilson C; Gregoret LM; Agard DA J Mol Biol; 1993 Feb; 229(4):996-1006. PubMed ID: 8445659 [TBL] [Abstract][Full Text] [Related]
11. Backbone-dependent rotamer library for proteins. Application to side-chain prediction. Dunbrack RL; Karplus M J Mol Biol; 1993 Mar; 230(2):543-74. PubMed ID: 8464064 [TBL] [Abstract][Full Text] [Related]
12. Advantages of fine-grained side chain conformer libraries. Shetty RP; De Bakker PI; DePristo MA; Blundell TL Protein Eng; 2003 Dec; 16(12):963-9. PubMed ID: 14983076 [TBL] [Abstract][Full Text] [Related]
13. Modelling antibody side chain conformations using heuristic database search. Ritchie DW; Kemp GJ Proc Int Conf Intell Syst Mol Biol; 1997; 5():237-40. PubMed ID: 9322043 [TBL] [Abstract][Full Text] [Related]
14. Free energies of amino acid side-chain rotamers in alpha-helices, beta-sheets and alpha-helix N-caps. Stapley BJ; Doig AJ J Mol Biol; 1997 Sep; 272(3):456-64. PubMed ID: 9325103 [TBL] [Abstract][Full Text] [Related]
15. Design of a rotamer library for coarse-grained models in protein-folding simulations. Larriva M; Rey A J Chem Inf Model; 2014 Jan; 54(1):302-13. PubMed ID: 24354725 [TBL] [Abstract][Full Text] [Related]
16. Prediction of protein side chain conformations: a study on the influence of backbone accuracy on conformation stability in the rotamer space. Tufféry P; Etchebest C; Hazout S Protein Eng; 1997 Apr; 10(4):361-72. PubMed ID: 9194160 [TBL] [Abstract][Full Text] [Related]
17. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Shapovalov MV; Dunbrack RL Structure; 2011 Jun; 19(6):844-58. PubMed ID: 21645855 [TBL] [Abstract][Full Text] [Related]
19. Using information theory to discover side chain rotamer classes: analysis of the effects of local backbone structure. Fetrow JS; Berg G Pac Symp Biocomput; 1999; ():278-89. PubMed ID: 10380204 [TBL] [Abstract][Full Text] [Related]
20. Statistically based reduced representation of amino acid side chains. Rainey JK; Goh MC J Chem Inf Comput Sci; 2004; 44(3):817-30. PubMed ID: 15154746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]