These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29318690)

  • 1. Lactose repressor hinge domain independently binds DNA.
    Xu JS; Hewitt MN; Gulati JS; Cruz MA; Zhan H; Liu S; Matthews KS
    Protein Sci; 2018 Apr; 27(4):839-847. PubMed ID: 29318690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine-tuning function: correlation of hinge domain interactions with functional distinctions between LacI and PurR.
    Swint-Kruse L; Larson C; Pettitt BM; Matthews KS
    Protein Sci; 2002 Apr; 11(4):778-94. PubMed ID: 11910022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered disulfide linking the hinge regions within lactose repressor dimer increases operator affinity, decreases sequence selectivity, and alters allostery.
    Falcon CM; Matthews KS
    Biochemistry; 2001 Dec; 40(51):15650-9. PubMed ID: 11747440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Operator DNA sequence variation enhances high affinity binding by hinge helix mutants of lactose repressor protein.
    Falcon CM; Matthews KS
    Biochemistry; 2000 Sep; 39(36):11074-83. PubMed ID: 10998245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinations of the alpha-helix-turn-alpha-helix motif of TetR with respective residues from LacI or 434Cro: DNA recognition, inducer binding, and urea-dependent denaturation.
    Backes H; Berens C; Helbl V; Walter S; Schmid FX; Hillen W
    Biochemistry; 1997 May; 36(18):5311-22. PubMed ID: 9154913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The lac repressor hinge helix in context: The effect of the DNA binding domain and symmetry.
    Seckfort D; Lynch GC; Pettitt BM
    Biochim Biophys Acta Gen Subj; 2020 Apr; 1864(4):129538. PubMed ID: 31958546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extrinsic interactions dominate helical propensity in coupled binding and folding of the lactose repressor protein hinge helix.
    Zhan H; Swint-Kruse L; Matthews KS
    Biochemistry; 2006 May; 45(18):5896-906. PubMed ID: 16669632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altering residues N125 and D149 impacts sugar effector binding and allosteric parameters in Escherichia coli lactose repressor.
    Xu J; Liu S; Chen M; Ma J; Matthews KS
    Biochemistry; 2011 Oct; 50(42):9002-13. PubMed ID: 21928765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Hinge Region Strengthens the Nonspecific Interaction between Lac-Repressor and DNA: A Computer Simulation Study.
    Sun L; Tabaka M; Hou S; Li L; Burdzy K; Aksimentiev A; Maffeo C; Zhang X; Holyst R
    PLoS One; 2016; 11(3):e0152002. PubMed ID: 27008630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-induced conformational changes and conformational dynamics in the solution structure of the lactose repressor protein.
    Taraban M; Zhan H; Whitten AE; Langley DB; Matthews KS; Swint-Kruse L; Trewhella J
    J Mol Biol; 2008 Feb; 376(2):466-81. PubMed ID: 18164724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subdividing repressor function: DNA binding affinity, selectivity, and allostery can be altered by amino acid substitution of nonconserved residues in a LacI/GalR homologue.
    Zhan H; Taraban M; Trewhella J; Swint-Kruse L
    Biochemistry; 2008 Aug; 47(31):8058-69. PubMed ID: 18616293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-guided approach to site-specific fluorophore labeling of the lac repressor LacI.
    Kipper K; Eremina N; Marklund E; Tubasum S; Mao G; Lehmann LC; Elf J; Deindl S
    PLoS One; 2018; 13(6):e0198416. PubMed ID: 29856839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering alternate cooperative-communications in the lactose repressor protein scaffold.
    Meyer S; Ramot R; Kishore Inampudi K; Luo B; Lin C; Amere S; Wilson CJ
    Protein Eng Des Sel; 2013 Jun; 26(6):433-43. PubMed ID: 23587523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycine insertion in the hinge region of lactose repressor protein alters DNA binding.
    Falcon CM; Matthews KS
    J Biol Chem; 1999 Oct; 274(43):30849-57. PubMed ID: 10521477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single mutation in the core domain of the lac repressor reduces leakiness.
    Gatti-Lafranconi P; Dijkman WP; Devenish SR; Hollfelder F
    Microb Cell Fact; 2013 Jul; 12():67. PubMed ID: 23834731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion concentration and temperature dependence of DNA binding: comparison of PurR and LacI repressor proteins.
    Moraitis MI; Xu H; Matthews KS
    Biochemistry; 2001 Jul; 40(27):8109-17. PubMed ID: 11434780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional consequences of exchanging domains between LacI and PurR are mediated by the intervening linker sequence.
    Tungtur S; Egan SM; Swint-Kruse L
    Proteins; 2007 Jul; 68(1):375-88. PubMed ID: 17436321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Price of disorder in the lac repressor hinge helix.
    Seckfort D; Montgomery Pettitt B
    Biopolymers; 2019 Jan; 110(1):e23239. PubMed ID: 30485404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring DNA binding to Escherichia coli lactose repressor using quartz crystal microbalance with dissipation.
    Xu J; Liu KW; Matthews KS; Biswal SL
    Langmuir; 2011 Apr; 27(8):4900-5. PubMed ID: 21410208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.