BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29318721)

  • 1. Catabolite repression in Campylobacter jejuni correlates with intracellular succinate levels.
    van der Stel AX; van de Lest CHA; Huynh S; Parker CT; van Putten JPM; Wösten MMSM
    Environ Microbiol; 2018 Apr; 20(4):1374-1388. PubMed ID: 29318721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Campylobacter jejuni RacRS system regulates fumarate utilization in a low oxygen environment.
    van der Stel AX; van Mourik A; Heijmen-van Dijk L; Parker CT; Kelly DJ; van de Lest CH; van Putten JP; Wösten MM
    Environ Microbiol; 2015 Apr; 17(4):1049-64. PubMed ID: 24707969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Crc/CrcZ-CrcY global regulatory system helps the integration of gluconeogenic and glycolytic metabolism in Pseudomonas putida.
    La Rosa R; Nogales J; Rojo F
    Environ Microbiol; 2015 Sep; 17(9):3362-78. PubMed ID: 25711694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of the LysR regulator Cj1000 of Campylobacter jejuni affects host colonization and respiration.
    Dufour V; Li J; Flint A; Rosenfeld E; Rivoal K; Georgeault S; Alazzam B; Ermel G; Stintzi A; Bonnaure-Mallet M; Baysse C
    Microbiology (Reading); 2013 Jun; 159(Pt 6):1165-1178. PubMed ID: 23558264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic analysis of Campylobacter jejuni grown in a medium containing serine as the main energy source.
    Watanabe-Yanai A; Iwata T; Kusumoto M; Tamamura Y; Akiba M
    Arch Microbiol; 2019 Jul; 201(5):571-579. PubMed ID: 30448871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dual-functioning fumarate reductase is the sole succinate:quinone reductase in Campylobacter jejuni and is required for full host colonization.
    Weingarten RA; Taveirne ME; Olson JW
    J Bacteriol; 2009 Aug; 191(16):5293-300. PubMed ID: 19525346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple operons connected with catabolism of aromatic compounds in Acinetobacter sp. strain ADP1 are under carbon catabolite repression.
    Dal S; Steiner I; Gerischer U
    J Mol Microbiol Biotechnol; 2002 Jul; 4(4):389-404. PubMed ID: 12125820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Major contribution of the type II beta carbonic anhydrase CanB (Cj0237) to the capnophilic growth phenotype of Campylobacter jejuni.
    Al-Haideri H; White MA; Kelly DJ
    Environ Microbiol; 2016 Feb; 18(2):721-35. PubMed ID: 26470757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two respiratory enzyme systems in Campylobacter jejuni NCTC 11168 contribute to growth on L-lactate.
    Thomas MT; Shepherd M; Poole RK; van Vliet AHM; Kelly DJ; Pearson BM
    Environ Microbiol; 2011 Jan; 13(1):48-61. PubMed ID: 20653766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aromatic degradative pathways in Acinetobacter baylyi underlie carbon catabolite repression.
    Fischer R; Bleichrodt FS; Gerischer UC
    Microbiology (Reading); 2008 Oct; 154(Pt 10):3095-3103. PubMed ID: 18832315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic analysis of a classical model of carbon catabolite regulation in Streptomyces coelicolor.
    Romero-Rodríguez A; Rocha D; Ruiz-Villafan B; Tierrafría V; Rodríguez-Sanoja R; Segura-González D; Sánchez S
    BMC Microbiol; 2016 Apr; 16():77. PubMed ID: 27121083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Campylobacter jejuni CsrA Regulates Metabolic and Virulence Associated Proteins and Is Necessary for Mouse Colonization.
    Fields JA; Li J; Gulbronson CJ; Hendrixson DR; Thompson SA
    PLoS One; 2016; 11(6):e0156932. PubMed ID: 27257952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Carbon catabolite repression or how bacteria choose their favorite sugars].
    Galinier A
    Med Sci (Paris); 2018; 34(6-7):531-539. PubMed ID: 30067204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino Acid Catabolism in
    Halsey CR; Lei S; Wax JK; Lehman MK; Nuxoll AS; Steinke L; Sadykov M; Powers R; Fey PD
    mBio; 2017 Feb; 8(1):. PubMed ID: 28196956
    [No Abstract]   [Full Text] [Related]  

  • 15. Catabolite repression in Pseudomonas aeruginosa PAO1 regulates the uptake of C4 -dicarboxylates depending on succinate concentration.
    Valentini M; Lapouge K
    Environ Microbiol; 2013 Jun; 15(6):1707-16. PubMed ID: 23253107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential carbon source utilization by Campylobacter jejuni 11168 in response to growth temperature variation.
    Line JE; Hiett KL; Guard-Bouldin J; Seal BS
    J Microbiol Methods; 2010 Feb; 80(2):198-202. PubMed ID: 20035808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transducer-like protein Tlp12 of Campylobacter jejuni is involved in glutamate and pyruvate chemotaxis.
    Lübke AL; Minatelli S; Riedel T; Lugert R; Schober I; Spröer C; Overmann J; Groß U; Zautner AE; Bohne W
    BMC Microbiol; 2018 Sep; 18(1):111. PubMed ID: 30200886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phototrophic Lactate Utilization by
    Govindaraju A; McKinlay JB; LaSarre B
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30902855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes.
    Gaynor EC; Wells DH; MacKichan JK; Falkow S
    Mol Microbiol; 2005 Apr; 56(1):8-27. PubMed ID: 15773975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional Modulation of Transport- and Metabolism-Associated Gene Clusters Leading to Utilization of Benzoate in Preference to Glucose in Pseudomonas putida CSV86.
    Choudhary A; Modak A; Apte SK; Phale PS
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28733285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.