BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29318813)

  • 1. Red fluorescence of dental biofilm as an indicator for assessing the efficacy of antimicrobials.
    Lee ES; de Josselin de Jong E; Jung HI; Kim BI
    J Biomed Opt; 2018 Jan; 23(1):1-6. PubMed ID: 29318813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association between the cariogenicity of a dental microcosm biofilm and its red fluorescence detected by Quantitative Light-induced Fluorescence-Digital (QLF-D).
    Lee ES; Kang SM; Ko HY; Kwon HK; Kim BI
    J Dent; 2013 Dec; 41(12):1264-70. PubMed ID: 24012520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring the maturation process of a dental microcosm biofilm using the Quantitative Light-induced Fluorescence-Digital (QLF-D).
    Kim YS; Lee ES; Kwon HK; Kim BI
    J Dent; 2014 Jun; 42(6):691-6. PubMed ID: 24657554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-biofilm activity of chlorhexidine-releasing elastomerics against dental microcosm biofilms.
    Choi JH; Jung EH; Lee ES; Jung HI; Kim BI
    J Dent; 2022 Jul; 122():104153. PubMed ID: 35526753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcosm biofilms originating from children with different caries experience have similar cariogenicity under successive sucrose challenges.
    Azevedo MS; van de Sande FH; Romano AR; Cenci MS
    Caries Res; 2011; 45(6):510-7. PubMed ID: 21967836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of sodium fluoride on oral biofilm microbiota and enamel demineralization.
    Thurnheer T; Belibasakis GN
    Arch Oral Biol; 2018 May; 89():77-83. PubMed ID: 29482049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between the cariogenic response in biofilms generated from saliva of mother/child pairs.
    Azevedo MS; van de Sande FH; Maske TT; Signori C; Romano AR; Cenci MS
    Biofouling; 2014 Sep; 30(8):903-9. PubMed ID: 25184431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of human milk and sucrose on cariogenicity of microcosm biofilms.
    Signori C; Hartwig AD; Silva-Júnior IFD; Correa MB; Azevedo MS; Cenci MS
    Braz Oral Res; 2018 Oct; 32():e109. PubMed ID: 30328901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in vitro dynamic microcosm biofilm model for caries lesion development and antimicrobial dose-response studies.
    Maske TT; Brauner KV; Nakanishi L; Arthur RA; van de Sande FH; Cenci MS
    Biofouling; 2016; 32(3):339-48. PubMed ID: 26905384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine.
    von Ohle C; Gieseke A; Nistico L; Decker EM; DeBeer D; Stoodley P
    Appl Environ Microbiol; 2010 Apr; 76(7):2326-34. PubMed ID: 20118374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of single species biofilms and microcosm dental plaques to pulsing with chlorhexidine.
    Pratten J; Smith AW; Wilson M
    J Antimicrob Chemother; 1998 Oct; 42(4):453-9. PubMed ID: 9818743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the Inoculum Source on the Cariogenicity of in vitro Microcosm Biofilms.
    Signori C; van de Sande FH; Maske TT; de Oliveira EF; Cenci MS
    Caries Res; 2016; 50(2):97-103. PubMed ID: 26919718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial activity of Melaleuca alternifolia nanoparticles in polymicrobial biofilm in situ.
    de Souza ME; Clerici DJ; Verdi CM; Fleck G; Quatrin PM; Spat LE; Bonez PC; Santos CFD; Antoniazzi RP; Zanatta FB; Gundel A; Martinez DST; de Almeida Vaucher R; Santos RCV
    Microb Pathog; 2017 Dec; 113():432-437. PubMed ID: 29162482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action of food preservatives on 14-days dental biofilm formation, biofilm vitality and biofilm-derived enamel demineralisation in situ.
    Arweiler NB; Netuschil L; Beier D; Grunert S; Heumann C; Altenburger MJ; Sculean A; Nagy K; Al-Ahmad A; Auschill TM
    Clin Oral Investig; 2014 Apr; 18(3):829-38. PubMed ID: 23907470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the antimicrobial and anti-caries effects of TiF4 varnish under microcosm biofilm formed on enamel.
    Souza BM; Fernandes Neto C; Salomão PMA; Vasconcelos LRSM; Andrade FB; Magalhães AC
    J Appl Oral Sci; 2018; 26():e20170304. PubMed ID: 29489933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial Effects of Non-Thermal Atmospheric Pressure Plasma on Oral Microcosm Biofilms.
    Lee J; Cho S; Kim HE
    Int J Environ Res Public Health; 2023 Jan; 20(3):. PubMed ID: 36767814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in vitro biofilm model for enamel demineralization and antimicrobial dose-response studies.
    van de Sande FH; Azevedo MS; Lund RG; Huysmans MC; Cenci MS
    Biofouling; 2011 Oct; 27(9):1057-63. PubMed ID: 22044385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of fluoridated milk on enamel and root dentin demineralization evaluated by a biofilm caries model.
    Giacaman RA; Muñoz MJ; Ccahuana-Vasquez RA; Muñoz-Sandoval C; Cury JA
    Caries Res; 2012; 46(5):460-6. PubMed ID: 22759448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of different antibacterial agents on enamel in a biofilm caries model.
    Savas S; Kucukyılmaz E; Celik EU; Ates M
    J Oral Sci; 2015; 57(4):367-72. PubMed ID: 26666861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a mouthrinse containing Malva sylvestris on the viability and activity of microcosm biofilm and on enamel demineralization compared to known antimicrobials mouthrinses.
    Braga AS; Pires JG; Magalhães AC
    Biofouling; 2018 Mar; 34(3):252-261. PubMed ID: 29430962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.