These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29319003)

  • 1. Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers.
    Xiang Q; Li Z; Zheng M; Liu Q; Chen Y; Yang L; Jiang T; Duan H
    Nanotechnology; 2018 Mar; 29(10):105301. PubMed ID: 29319003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suspended 3D metallic dimers with sub-10 nm gap for high-sensitive SERS detection.
    Zeng P; Zhou Y; Shu Z; Liang H; Zhang X; Chen Y; Duan H; Zheng M
    Nanotechnology; 2022 Dec; 34(9):. PubMed ID: 36384034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap.
    Xiang Q; Zhu X; Chen Y; Duan H
    Nanotechnology; 2016 Feb; 27(7):075201. PubMed ID: 26762890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bimetallic 3D nanostar dimers in ring cavities: recyclable and robust surface-enhanced Raman scattering substrates for signal detection from few molecules.
    Gopalakrishnan A; Chirumamilla M; De Angelis F; Toma A; Zaccaria RP; Krahne R
    ACS Nano; 2014 Aug; 8(8):7986-94. PubMed ID: 25084515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps.
    Duan H; Hu H; Kumar K; Shen Z; Yang JK
    ACS Nano; 2011 Sep; 5(9):7593-600. PubMed ID: 21846105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled Patterning of Plasmonic Dimers by Using an Ultrathin Nanoporous Alumina Membrane as a Shadow Mask.
    Hao Q; Huang H; Fan X; Yin Y; Wang J; Li W; Qiu T; Ma L; Chu PK; Schmidt OG
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36199-36205. PubMed ID: 28948758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D zig-zag nanogaps based on nanoskiving for plasmonic nanofocusing.
    Gu P; Zhou Z; Zhao Z; Möhwald H; Li C; Chiechi RC; Shi Z; Zhang G
    Nanoscale; 2019 Feb; 11(8):3583-3590. PubMed ID: 30729970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of single-nanometer metallic gaps via spontaneous nanoscale dewetting.
    Zeng P; Shu Z; Zhang S; Liang H; Zhou Y; Ba D; Feng Z; Zheng M; Wu J; Chen Y; Duan H
    Nanotechnology; 2021 May; 32(20):205302. PubMed ID: 33571970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic tooth-multilayer structure with high enhancement field for surface enhanced Raman spectroscopy.
    Huang LC; Wang Z; Clark JK; Ho YL; Delaunay JJ
    Nanotechnology; 2017 Mar; 28(12):125206. PubMed ID: 28170345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical Assembly of Plasmonic Nanoparticle Heterodimer Arrays with Tunable Sub-5 nm Nanogaps.
    Li J; Deng TS; Liu X; Dolan JA; Scherer NF; Nealey PF
    Nano Lett; 2019 Jul; 19(7):4314-4320. PubMed ID: 31184897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for New Applications in Sensing, Microreaction, and Data Storage.
    Phan-Quang GC; Han X; Koh CSL; Sim HYF; Lay CL; Leong SX; Lee YH; Pazos-Perez N; Alvarez-Puebla RA; Ling XY
    Acc Chem Res; 2019 Jul; 52(7):1844-1854. PubMed ID: 31180637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps.
    Zhu Z; Bai B; Duan H; Zhang H; Zhang M; You O; Li Q; Tan Q; Wang J; Fan S; Jin G
    Small; 2014 Apr; 10(8):1603-11. PubMed ID: 24665074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic dimer antennas for surface enhanced Raman scattering.
    Höflich K; Becker M; Leuchs G; Christiansen S
    Nanotechnology; 2012 May; 23(18):185303. PubMed ID: 22498764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms.
    Chen J; Qin G; Wang J; Yu J; Shen B; Li S; Ren Y; Zuo L; Shen W; Das B
    Biosens Bioelectron; 2013 Jun; 44():191-7. PubMed ID: 23428732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS.
    Zhang Y; Yang P; Habeeb Muhammed MA; Alsaiari SK; Moosa B; Almalik A; Kumar A; Ringe E; Khashab NM
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37597-37605. PubMed ID: 28990755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Gold Trimers and Dimers with Air-Filled Nanogaps.
    Lawson ZR; Preston AS; Korsa MT; Dominique NL; Tuff WJ; Sutter E; Camden JP; Adam J; Hughes RA; Neretina S
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):28186-28198. PubMed ID: 35695394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Fabrication of Ultradense Annular Nanogap Arrays for Plasmon-Enhanced Spectroscopy.
    Cai H; Meng Q; Zhao H; Li M; Dai Y; Lin Y; Ding H; Pan N; Tian Y; Luo Y; Wang X
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20189-20195. PubMed ID: 29799180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-aligned colloidal lithography for controllable and tuneable plasmonic nanogaps.
    Ding T; Herrmann LO; de Nijs B; Benz F; Baumberg JJ
    Small; 2015 May; 11(18):2139-43. PubMed ID: 25505000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering.
    Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J
    ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.