These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29319069)

  • 1. Utility of PEGylated dithiolane ligands for direct synthesis of water-soluble Au, Ag, Pt, Pd, Cu and AuPt nanoparticles.
    Oh E; Delehanty JB; Klug CA; Susumu K; Russ Algar W; Goswami R; Medintz IL
    Chem Commun (Camb); 2018 Feb; 54(16):1956-1959. PubMed ID: 29319069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centrifugal microfluidic device for the high-throughput synthesis of Pd@AuPt core-shell nanoparticles to evaluate the performance of hydrogen peroxide generation.
    Nguyen HV; Kim KY; Nam H; Lee SY; Yu T; Seo TS
    Lab Chip; 2020 Sep; 20(18):3293-3301. PubMed ID: 32766653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully alloyed metal nanorods with highly tunable properties.
    Albrecht W; van der Hoeven JE; Deng TS; de Jongh PE; van Blaaderen A
    Nanoscale; 2017 Feb; 9(8):2845-2851. PubMed ID: 28169378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous syntheses of Pd@Pt and Cu@Ag core-shell nanoparticles using microwave-assisted core particle formation coupled with galvanic metal displacement.
    Miyakawa M; Hiyoshi N; Nishioka M; Koda H; Sato K; Miyazawa A; Suzuki TM
    Nanoscale; 2014 Aug; 6(15):8720-5. PubMed ID: 24948122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous formation of Au-Pt alloyed nanoparticles using pure nano-counterparts as starters: a ligand and size dependent process.
    Usón L; Sebastian V; Mayoral A; Hueso JL; Eguizabal A; Arruebo M; Santamaria J
    Nanoscale; 2015 Jun; 7(22):10152-61. PubMed ID: 25985914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trimetallic Ag@AuPt Neapolitan nanoparticles.
    Song Y; Chen S
    Nanoscale; 2013 Aug; 5(16):7284-9. PubMed ID: 23817455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic-level alloying and de-alloying in doped gold nanoparticles.
    Gottlieb E; Qian H; Jin R
    Chemistry; 2013 Mar; 19(13):4238-43. PubMed ID: 23404729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-pot synthesis of AuPt alloyed nanoparticles by intense x-ray irradiation.
    Wang CL; Hsao BJ; Lai SF; Chen WC; Chen HH; Chen YY; Chien CC; Cai X; Kempson IM; Hwu Y; Margaritondo G
    Nanotechnology; 2011 Feb; 22(6):065605. PubMed ID: 21212491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Generalized Method for the Synthesis of Ligand-Free M@SiO
    Shaik F; Zhang W; Niu W
    Langmuir; 2017 Apr; 33(13):3281-3286. PubMed ID: 28319667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Platinum(IV) prodrug conjugated Pd@Au nanoplates for chemotherapy and photothermal therapy.
    Shi S; Chen X; Wei J; Huang Y; Weng J; Zheng N
    Nanoscale; 2016 Mar; 8(10):5706-13. PubMed ID: 26900670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined Experimental and Theoretical Study of the Structure of AuPt Nanoparticles Prepared by Galvanic Exchange.
    Lapp AS; Duan Z; Henkelman G; Crooks RM
    Langmuir; 2019 Dec; 35(50):16496-16507. PubMed ID: 31804090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of AuPt alloy nanoparticles in polyelectrolyte multilayers with enhanced catalytic activity for reduction of 4-nitrophenol.
    Chu C; Su Z
    Langmuir; 2014 Dec; 30(50):15345-50. PubMed ID: 25454560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their electrocatalysis for oxygen reduction reaction.
    Guo S; Zhang S; Su D; Sun S
    J Am Chem Soc; 2013 Sep; 135(37):13879-84. PubMed ID: 23978233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile routes toward functional, water-soluble nanoparticles via trifluoroethylester-PEG-thiol ligands.
    Latham AH; Williams ME
    Langmuir; 2006 Apr; 22(9):4319-26. PubMed ID: 16618182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions.
    Chen D; Li C; Liu H; Ye F; Yang J
    Sci Rep; 2015 Jul; 5():11949. PubMed ID: 26144550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Au-Cu-M (M = Pt, Pd, Ag) nanorods with enhanced catalytic efficiency by galvanic replacement reaction.
    Wang X; Chen S; Reggiano G; Thota S; Wang Y; Kerns P; Suib SL; Zhao J
    Chem Commun (Camb); 2019 Jan; 55(9):1249-1252. PubMed ID: 30632545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.
    Kuai L; Geng B; Wang S; Sang Y
    Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable thermodynamic stability of Au-CuPt core-shell trimetallic nanoparticles by controlling the alloy composition: insights from atomistic simulations.
    Huang R; Shao GF; Wen YH; Sun SG
    Phys Chem Chem Phys; 2014 Nov; 16(41):22754-61. PubMed ID: 25234428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction.
    Chen D; Ye F; Liu H; Yang J
    Sci Rep; 2016 Apr; 6():24600. PubMed ID: 27079897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autoprogrammed synthesis of triple-layered Au@Pd@Pt core-shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt shell.
    Wang L; Yamauchi Y
    J Am Chem Soc; 2010 Oct; 132(39):13636-8. PubMed ID: 20831169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.