BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29319094)

  • 41. Spin-splitting effects on the interband optical conductivity and activity of phosphorene.
    Phuong LTT; Phong TC; Yarmohammadi M
    Sci Rep; 2020 Jun; 10(1):9201. PubMed ID: 32513921
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phosphorene as an anode material for Na-ion batteries: a first-principles study.
    Kulish VV; Malyi OI; Persson C; Wu P
    Phys Chem Chem Phys; 2015 Jun; 17(21):13921-8. PubMed ID: 25947542
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Point defects in lines in single crystalline phosphorene: directional migration and tunable band gaps.
    Li X; Ma L; Wang D; Zeng XC; Wu X; Yang J
    Nanoscale; 2016 Oct; 8(41):17801-17808. PubMed ID: 27722611
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Strong optical force and its confinement applications based on heterogeneous phosphorene pairs.
    Wang J; Lu C; Hu ZD; Chen C; Pan L; Ding W
    Opt Express; 2018 Sep; 26(18):23221-23232. PubMed ID: 30184977
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electromechanical behaviour of violet phosphorene nanoflakes.
    Zhang B; Wang Z; Chen C; Gu M; Zhou J; Zhang J
    Phys Chem Chem Phys; 2023 Sep; 25(36):24293-24297. PubMed ID: 37695340
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optical properties of graphene nanoflakes: Shape matters.
    Mansilla Wettstein C; Bonafé FP; Oviedo MB; Sánchez CG
    J Chem Phys; 2016 Jun; 144(22):224305. PubMed ID: 27306005
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.
    Wu ZF; Gao PF; Guo L; Kang J; Fang DQ; Zhang Y; Xia MG; Zhang SL; Wen YH
    Phys Chem Chem Phys; 2017 Dec; 19(47):31796-31803. PubMed ID: 29170767
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Variable electronic properties of lateral phosphorene-graphene heterostructures.
    Tian X; Liu L; Du Y; Gu J; Xu JB; Yakobson BI
    Phys Chem Chem Phys; 2015 Dec; 17(47):31685-92. PubMed ID: 26554700
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Edge reconstructions of black phosphorene: a global search.
    Liu Y; Li D; Cui T
    Nanoscale; 2021 Feb; 13(7):4085-4091. PubMed ID: 33566039
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Controlling the orientation of nucleobases by dipole moment interaction with graphene/h-BN interfaces.
    Vovusha H; Amorim RG; Scheicher RH; Sanyal B
    RSC Adv; 2018 Feb; 8(12):6527-6531. PubMed ID: 35540402
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fabrication of SnS2 flower like nanoflake assemblies through thermal evaporation.
    Biswas S; Kar S; Ghoshal T; Chaudhuri S
    J Nanosci Nanotechnol; 2007 Dec; 7(12):4540-5. PubMed ID: 18283840
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermal stability of graphene edge structure and graphene nanoflakes.
    Barnard AS; Snook IK
    J Chem Phys; 2008 Mar; 128(9):094707. PubMed ID: 18331110
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Experimental and molecular dynamics studies of an ultra-fast sequential hydrogen plasma process for fabricating phosphorene-based sensors.
    Rajabali M; Asgharyan H; Naeini VF; Boudaghi A; Zabihi B; Foroutan M; Mohajerzadeh S
    Sci Rep; 2021 Aug; 11(1):16076. PubMed ID: 34373522
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diffusion and Coalescence of Phosphorene Monovacancies Studied Using High-Dimensional Neural Network Potentials.
    Kývala L; Angeletti A; Franchini C; Dellago C
    J Phys Chem C Nanomater Interfaces; 2023 Dec; 127(49):23743-23751. PubMed ID: 38115818
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photocatalytic TiO2/glass nanoflake array films.
    Ho W; Yu JC; Yu J
    Langmuir; 2005 Apr; 21(8):3486-92. PubMed ID: 15807592
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly Sensitive Flexible Photodetectors Based on Self-Assembled Tin Monosulfide Nanoflakes with Graphene Electrodes.
    Mohan Kumar G; Fu X; Ilanchezhiyan P; Yuldashev SU; Lee DJ; Cho HD; Kang TW
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32142-32150. PubMed ID: 28853280
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pentagons and Heptagons on Edges of Graphene Nanoflakes Analyzed by X-ray Photoelectron and Raman Spectroscopy.
    Kim J; Lee N; Choi D; Kim DY; Kawai R; Yamada Y
    J Phys Chem Lett; 2021 Oct; 12(40):9955-9962. PubMed ID: 34617766
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Liquid-Phase Exfoliation of Phosphorene: Design Rules from Molecular Dynamics Simulations.
    Sresht V; Pádua AA; Blankschtein D
    ACS Nano; 2015 Aug; 9(8):8255-68. PubMed ID: 26192620
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spontaneous ripple formation in phosphorene: electronic properties and possible applications.
    Zhou Y; Yang L; Zu X; Gao F
    Nanoscale; 2016 Jun; 8(23):11827-33. PubMed ID: 27226229
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes.
    Hu W; Lin L; Yang C; Yang J
    J Chem Phys; 2014 Dec; 141(21):214704. PubMed ID: 25481158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.