These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 29319296)
1. Potassium Tethered Carbons with Unparalleled Adsorption Capacity and Selectivity for Low-Cost Carbon Dioxide Capture from Flue Gas. Zhao H; Shi L; Zhang Z; Luo X; Zhang L; Shen Q; Li S; Zhang H; Sun N; Wei W; Sun Y ACS Appl Mater Interfaces; 2018 Jan; 10(4):3495-3505. PubMed ID: 29319296 [TBL] [Abstract][Full Text] [Related]
2. Hydroquinone and Quinone-Grafted Porous Carbons for Highly Selective CO2 Capture from Flue Gases and Natural Gas Upgrading. Wang J; Krishna R; Yang J; Deng S Environ Sci Technol; 2015 Aug; 49(15):9364-73. PubMed ID: 26114815 [TBL] [Abstract][Full Text] [Related]
3. Effective Approach for Increasing the Heteroatom Doping Levels of Porous Carbons for Superior CO Abdelmoaty YH; Tessema TD; Norouzi N; El-Kadri OM; Turner JBM; El-Kaderi HM ACS Appl Mater Interfaces; 2017 Oct; 9(41):35802-35810. PubMed ID: 28956436 [TBL] [Abstract][Full Text] [Related]
4. Control of Uniform and Interconnected Macroporous Structure in PolyHIPE for Enhanced CO2 Adsorption/Desorption Kinetics. Wang Q; Liu Y; Chen J; Du Z; Mi J Environ Sci Technol; 2016 Jul; 50(14):7879-88. PubMed ID: 27322734 [TBL] [Abstract][Full Text] [Related]
5. CO Yue L; Xia Q; Wang L; Wang L; DaCosta H; Yang J; Hu X J Colloid Interface Sci; 2018 Feb; 511():259-267. PubMed ID: 29028577 [TBL] [Abstract][Full Text] [Related]
6. A Data-Driven Approach to Molten Salt Synthesis of N-Rich Carbon Adsorbents for Selective CO Burrow JN; Eichler JE; Martinez WA; Mullins CB Adv Mater; 2024 Feb; 36(5):e2306275. PubMed ID: 37669465 [TBL] [Abstract][Full Text] [Related]
7. Poly(ethylenimine)-Functionalized Monolithic Alumina Honeycomb Adsorbents for CO2 Capture from Air. Sakwa-Novak MA; Yoo CJ; Tan S; Rashidi F; Jones CW ChemSusChem; 2016 Jul; 9(14):1859-68. PubMed ID: 27304708 [TBL] [Abstract][Full Text] [Related]
8. Alkylamine-tethered stable metal-organic framework for CO(2) capture from flue gas. Hu Y; Verdegaal WM; Yu SH; Jiang HL ChemSusChem; 2014 Mar; 7(3):734-7. PubMed ID: 24464970 [TBL] [Abstract][Full Text] [Related]
9. Directed synthesis of nanoporous carbons from task-specific ionic liquid precursors for the adsorption of CO2. Mahurin SM; Fulvio PF; Hillesheim PC; Nelson KM; Veith GM; Dai S ChemSusChem; 2014 Dec; 7(12):3284-9. PubMed ID: 25082361 [TBL] [Abstract][Full Text] [Related]
10. CuCl Yao S; Li Z; Liu Z; Geng X; Dai L; Wang Y ACS Omega; 2023 Nov; 8(44):41641-41648. PubMed ID: 37970063 [TBL] [Abstract][Full Text] [Related]
11. Design and Synthesis of N-Doped Porous Carbons for the Selective Carbon Dioxide Capture under Humid Flue Gas Conditions. Abdelnaby MM; Aliyu M; Nemitallah MA; Alloush AM; Mahmoud EM; Ossoss KM; Zeama M; Dowaidar M Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299274 [TBL] [Abstract][Full Text] [Related]
12. Direct Carbonization of Cyanopyridinium Crystalline Dicationic Salts into Nitrogen-Enriched Ultra-Microporous Carbons toward Excellent CO2 Adsorption. Chen G; Wang X; Li J; Hou W; Zhou Y; Wang J ACS Appl Mater Interfaces; 2015 Aug; 7(33):18508-18. PubMed ID: 26234297 [TBL] [Abstract][Full Text] [Related]
13. Selective and Regenerative Carbon Dioxide Capture by Highly Polarizing Porous Carbon Nitride. Oh Y; Le VD; Maiti UN; Hwang JO; Park WJ; Lim J; Lee KE; Bae YS; Kim YH; Kim SO ACS Nano; 2015 Sep; 9(9):9148-57. PubMed ID: 26267150 [TBL] [Abstract][Full Text] [Related]
14. Development of chemically activated N-enriched carbon adsorbents from urea-formaldehyde resin for CO Tiwari D; Bhunia H; Bajpai PK J Environ Manage; 2018 Jul; 218():579-592. PubMed ID: 29715667 [TBL] [Abstract][Full Text] [Related]
15. Balsam-Pear-Skin-Like Porous Polyacrylonitrile Nanofibrous Membranes Grafted with Polyethyleneimine for Postcombustion CO Zhang Y; Guan J; Wang X; Yu J; Ding B ACS Appl Mater Interfaces; 2017 Nov; 9(46):41087-41098. PubMed ID: 29087181 [TBL] [Abstract][Full Text] [Related]
16. Mathematical modeling and experimental breakthrough curves of carbon dioxide adsorption on metal organic framework CPM-5. Sabouni R; Kazemian H; Rohani S Environ Sci Technol; 2013 Aug; 47(16):9372-80. PubMed ID: 23889136 [TBL] [Abstract][Full Text] [Related]
17. Highly optimized CO2 capture by inexpensive nanoporous covalent organic polymers and their amine composites. Patel HA; Yavuz CT Faraday Discuss; 2015; 183():401-12. PubMed ID: 26388535 [TBL] [Abstract][Full Text] [Related]
18. Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. Mason JA; McDonald TM; Bae TH; Bachman JE; Sumida K; Dutton JJ; Kaye SS; Long JR J Am Chem Soc; 2015 Apr; 137(14):4787-803. PubMed ID: 25844924 [TBL] [Abstract][Full Text] [Related]
19. A method for creating microporous carbon materials with excellent CO2-adsorption capacity and selectivity. Qian D; Lei C; Wang EM; Li WC; Lu AH ChemSusChem; 2014 Jan; 7(1):291-8. PubMed ID: 24124090 [TBL] [Abstract][Full Text] [Related]
20. Carbon-supported ionic liquids as innovative adsorbents for CO₂ separation from synthetic flue-gas. Erto A; Silvestre-Albero A; Silvestre-Albero J; Rodríguez-Reinoso F; Balsamo M; Lancia A; Montagnaro F J Colloid Interface Sci; 2015 Jun; 448():41-50. PubMed ID: 25710387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]