These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29319310)

  • 1. Oxygen-Vacancy-Mediated Exciton Dissociation in BiOBr for Boosting Charge-Carrier-Involved Molecular Oxygen Activation.
    Wang H; Yong D; Chen S; Jiang S; Zhang X; Shao W; Zhang Q; Yan W; Pan B; Xie Y
    J Am Chem Soc; 2018 Feb; 140(5):1760-1766. PubMed ID: 29319310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting Hot-Electron Generation: Exciton Dissociation at the Order-Disorder Interfaces in Polymeric Photocatalysts.
    Wang H; Sun X; Li D; Zhang X; Chen S; Shao W; Tian Y; Xie Y
    J Am Chem Soc; 2017 Feb; 139(6):2468-2473. PubMed ID: 28102077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interior Exciton Extraction by Spatial-Controlled Iodine Doping in BiOBr Photocatalysts.
    He X; Zhong X; Si W; Zhao Z; Wang H; Zhang X; Xie Y
    Nano Lett; 2024 Jun; 24(22):6545-6552. PubMed ID: 38781416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ketones as Molecular Co-catalysts for Boosting Exciton-Based Photocatalytic Molecular Oxygen Activation.
    Wang H; Jiang S; Liu W; Zhang X; Zhang Q; Luo Y; Xie Y
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):11093-11100. PubMed ID: 32219966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Excitonic Perspective on Low-Dimensional Semiconductors for Photocatalysis.
    Wang H; Liu W; He X; Zhang P; Zhang X; Xie Y
    J Am Chem Soc; 2020 Aug; 142(33):14007-14022. PubMed ID: 32702981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant Electron-Hole Interactions in Confined Layered Structures for Molecular Oxygen Activation.
    Wang H; Chen S; Yong D; Zhang X; Li S; Shao W; Sun X; Pan B; Xie Y
    J Am Chem Soc; 2017 Apr; 139(13):4737-4742. PubMed ID: 28282129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Boronizing Can Weaken the Excitonic Effects of BiOBr Nanosheets for Efficient O
    Shi Y; Yang Z; Shi L; Li H; Liu X; Zhang X; Cheng J; Liang C; Cao S; Guo F; Liu X; Ai Z; Zhang L
    Environ Sci Technol; 2022 Oct; 56(20):14478-14486. PubMed ID: 36173086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic Molecular Oxygen Activation by Regulating Excitonic Effects in Covalent Organic Frameworks.
    Qian Y; Li D; Han Y; Jiang HL
    J Am Chem Soc; 2020 Dec; 142(49):20763-20771. PubMed ID: 33226795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double regulation of bismuth and halogen source for the preparation of bismuth oxybromide nanosquares with enhanced photocatalytic activity.
    Liu Y; Di J; Ji M; Gu K; Yin S; Li W; Xia J; Li H
    J Colloid Interface Sci; 2017 Apr; 492():25-32. PubMed ID: 28068541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective Charge Carrier Utilization in Photocatalytic Conversions.
    Zhang P; Wang T; Chang X; Gong J
    Acc Chem Res; 2016 May; 49(5):911-21. PubMed ID: 27075166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitonic Effects in Polymeric Photocatalysts.
    Wang H; Jin S; Zhang X; Xie Y
    Angew Chem Int Ed Engl; 2020 Dec; 59(51):22828-22839. PubMed ID: 32609426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen Vacancy Engineering Promoted Photocatalytic Ammonia Synthesis on Ultrathin Two-Dimensional Bismuth Oxybromide Nanosheets.
    Xue X; Chen R; Chen H; Hu Y; Ding Q; Liu Z; Ma L; Zhu G; Zhang W; Yu Q; Liu J; Ma J; Jin Z
    Nano Lett; 2018 Nov; 18(11):7372-7377. PubMed ID: 30350657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulate the Strong Exciton Effect by Na
    Xing F; Liu S; Li J; Wang C; Jin S; Jin H; Li J
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):860-868. PubMed ID: 38151338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bismuth Vacancy-Tuned Bismuth Oxybromide Ultrathin Nanosheets toward Photocatalytic CO
    Di J; Chen C; Zhu C; Song P; Xiong J; Ji M; Zhou J; Fu Q; Xu M; Hao W; Xia J; Li S; Li H; Liu Z
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30786-30792. PubMed ID: 31362488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Band-structure tunability
    Ghosh S; Sarkar D; Bastia S; Chaudhary YS
    Nanoscale; 2023 Jul; 15(26):10939-10974. PubMed ID: 37337832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Molecule Colocalization of Redox Reactions on Semiconductor Photocatalysts Connects Surface Heterogeneity and Charge-Carrier Separation in Bismuth Oxybromide.
    Shen M; Ding T; Rackers WH; Tan C; Mahmood K; Lew MD; Sadtler B
    J Am Chem Soc; 2021 Aug; 143(30):11393-11403. PubMed ID: 34284584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen vacancy engineering of BiOBr/HNb
    Zhou C; Shi X; Li D; Song Q; Zhou Y; Jiang D; Shi W
    J Colloid Interface Sci; 2021 Oct; 599():245-254. PubMed ID: 33945971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locally Asymmetric BiOBr for Efficient Exciton Dissociation and Selective O
    Yu L; Li H; Shang H; Xing P; Zhou B; Chen Z; Liu X; Zhang H; Shi Y; Zhang L
    ACS Nano; 2023 Aug; 17(15):15077-15084. PubMed ID: 37489696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction to "Oxygen-Vacancy-Mediated Exciton Dissociation in BiOBr for Boosting Charge-Carrier-Involved Molecular Oxygen Activation".
    Wang H; Yong D; Chen S; Jiang S; Zhang X; Shao W; Zhang Q; Yan W; Pan B; Xie Y
    J Am Chem Soc; 2018 Apr; 140(15):5320. PubMed ID: 29630369
    [No Abstract]   [Full Text] [Related]  

  • 20. Insights into the excitonic processes in polymeric photocatalysts.
    Wang H; Jiang S; Chen S; Zhang X; Shao W; Sun X; Zhao Z; Zhang Q; Luo Y; Xie Y
    Chem Sci; 2017 May; 8(5):4087-4092. PubMed ID: 28580122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.