These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2932000)

  • 21. The effects of thermal injury on rat skeletal muscle microcirculation.
    Ferguson MK; Seifert FC; Replogle RL
    J Trauma; 1982 Oct; 22(10):880-3. PubMed ID: 7131609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Changes in erythrocyte velocity in microvessels measured with a microprismatic grating].
    Shinkarenko VS; Morozov SE
    Biull Eksp Biol Med; 1984 Jan; 97(1):104-6. PubMed ID: 6692017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [The effect of an increased erythrocyte count on rapid blood flow fluctuations in the microvessels of the rat brain].
    Kisliakov IuIa; Levkovich IuI; Shumilova TE; Vershinina EA
    Fiziol Zh SSSR Im I M Sechenova; 1989 Jun; 75(6):777-85. PubMed ID: 2806644
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Red blood cell velocity measurements of complete capillary in finger nail-fold using optical flow estimation.
    Wu CC; Zhang G; Huang TC; Lin KP
    Microvasc Res; 2009 Dec; 78(3):319-24. PubMed ID: 19647002
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perceived vessel lumen and cell-blood velocity ratio: impact on in vivo blood flow rate determination.
    Cokelet GR; Sarelius IH
    Am J Physiol; 1992 Apr; 262(4 Pt 2):H1156-63. PubMed ID: 1566898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Velocity profiles in the microvessels dependent on the velocity and concentration of erythrocytes].
    Mamisashvili VA; Baratashvili IK; Lominadze DG
    Fiziol Zh SSSR Im I M Sechenova; 1982 Dec; 68(12):1673-9. PubMed ID: 7166190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of volumetric flow in capillary tubes using an optical Doppler velocimeter.
    Davis MJ
    Microvasc Res; 1987 Sep; 34(2):223-30. PubMed ID: 2959844
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Determination of the rate of oxygen release from flowing erythrocytes in a microvessel--development of an apparatus and the application to microvessels of rat mesentery].
    Tateishi N
    Nihon Seirigaku Zasshi; 1990; 52(2):23-35. PubMed ID: 2139703
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Capillary fluxmeter: the simultaneous measurement of hematocrit, velocity and flux.
    Intaglietta M; Mirhashemi S; Tompkins WR
    Int J Microcirc Clin Exp; 1989 Jul; 8(3):313-20. PubMed ID: 2527832
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simple "streak length method" for quantifying and characterizing red blood cell velocity profiles and blood flow in rat skeletal muscle arterioles.
    Al-Khazraji BK; Novielli NM; Goldman D; Medeiros PJ; Jackson DN
    Microcirculation; 2012 May; 19(4):327-35. PubMed ID: 22284025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of bat wing capillary pressure and blood flow during reduced perfusion pressure.
    Davis MJ
    Am J Physiol; 1988 Nov; 255(5 Pt 2):H1114-29. PubMed ID: 3189573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Red blood cell velocity profiles in skeletal muscle venules at low flow rates are described by the Casson model.
    Das B; Bishop JJ; Kim S; Meiselman HJ; Johnson PC; Popel AS
    Clin Hemorheol Microcirc; 2007; 36(3):217-33. PubMed ID: 17361024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasma skimming in vascular trees: numerical estimates of symmetry recovery lengths.
    Carr RT; Xiao J
    Microcirculation; 1995 Dec; 2(4):345-53. PubMed ID: 8714815
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hyperthermia-induced alteration in erythrocyte velocity in tumors.
    Reinhold HS; Van den Berg-Blok AE
    Int J Microcirc Clin Exp; 1983; 2(4):285-95. PubMed ID: 6678850
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relative blood velocity measurement in individual microvessels using the self-mixing effect in a fiber-coupled helium-neon laser.
    Ren T; Nuttall AL; Miller JM
    Microvasc Res; 1995 Mar; 49(2):233-45. PubMed ID: 7603358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct measurement of microvessel hematocrit, red cell flux, velocity, and transit time.
    Sarelius IH; Duling BR
    Am J Physiol; 1982 Dec; 243(6):H1018-26. PubMed ID: 7149038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Four window differential capillary velocimetry.
    Intaglietta M; Breit GA; Tompkins WR
    Microvasc Res; 1990 Jul; 40(1):46-54. PubMed ID: 2144607
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measurement of RBC velocities in the rat pial arteries with an image-intensified high-speed video camera system.
    Ishikawa M; Sekizuka E; Shimizu K; Yamaguchi N; Kawase T
    Microvasc Res; 1998 Nov; 56(3):166-72. PubMed ID: 9828154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Erythrocyte rheology in microcirculation.
    Maeda N
    Jpn J Physiol; 1996 Feb; 46(1):1-14. PubMed ID: 8743714
    [No Abstract]   [Full Text] [Related]  

  • 40. Blood-flow sensor impedance experiments.
    Davis M
    Med Res Eng; 1969; 8(5):20-30. PubMed ID: 5406349
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.