These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29320370)

  • 21. Synthesis and enhanced NO2 gas sensing properties of ZnO nanorods/TiO2 nanoparticles heterojunction composites.
    Zou CW; Wang J; Xie W
    J Colloid Interface Sci; 2016 Sep; 478():22-8. PubMed ID: 27280536
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An evolution from 3D face-centered-cubic ZnSnO3 nanocubes to 2D orthorhombic ZnSnO3 nanosheets with excellent gas sensing performance.
    Chen Y; Yu L; Li Q; Wu Y; Li Q; Wang T
    Nanotechnology; 2012 Oct; 23(41):415501. PubMed ID: 23010961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Response of a ZnO single crystal rod-based chemical sensor for hydrogen sulfide.
    Park NK; Park JY; Lee TJ
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6326-30. PubMed ID: 25936113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CO gas sensors based on p-type CuO nanotubes and CuO nanocubes: Morphology and surface structure effects on the sensing performance.
    Hou L; Zhang C; Li L; Du C; Li X; Kang XF; Chen W
    Talanta; 2018 Oct; 188():41-49. PubMed ID: 30029395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CuO-ZnO micro/nanoporous array-film-based chemosensors: new sensing properties to H2S.
    Xu Z; Duan G; Li Y; Liu G; Zhang H; Dai Z; Cai W
    Chemistry; 2014 May; 20(20):6040-6. PubMed ID: 24711055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discriminable Sensing Response Behavior to Homogeneous Gases Based on n-ZnO/p-NiO Composites.
    Zhou WD; Dastan D; Li J; Yin XT; Wang Q
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32325927
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large-Scale Synthesis of Hierarchically Porous ZnO Hollow Tubule for Fast Response to ppb-Level H
    Na HB; Zhang XF; Deng ZP; Xu YM; Huo LH; Gao S
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11627-11635. PubMed ID: 30811175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of the Morphology and Electrical Property of Metal-Deposited ZnO Nanostructures on CO Gas Sensitivity.
    Hwang SH; Kim YK; Hong SH; Lim SK
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33120867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of Hetero-Nanostructures on MoS
    Han Y; Huang D; Ma Y; He G; Hu J; Zhang J; Hu N; Su Y; Zhou Z; Zhang Y; Yang Z
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22640-22649. PubMed ID: 29896961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly Sensitive p + n Metal Oxide Sensor Array for Low-Concentration Gas Detection.
    Luo J; Jiang Y; Xiao F; Zhao X; Xie Z
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30126147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method.
    Shingange K; Tshabalala ZP; Ntwaeaborwa OM; Motaung DE; Mhlongo GH
    J Colloid Interface Sci; 2016 Oct; 479():127-138. PubMed ID: 27388126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. N-P transition sensing behaviors of ZnO nanotubes exposed to NO2 gas.
    Wang JX; Sun XW; Yang Y; Wu CM
    Nanotechnology; 2009 Nov; 20(46):465501. PubMed ID: 19843994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of nanograined ZnO nanowires and their enhanced gas sensing properties.
    Park S; An S; Ko H; Jin C; Lee C
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3650-6. PubMed ID: 22746969
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Near Room Temperature, Fast-Response, and Highly Sensitive Triethylamine Sensor Assembled with Au-Loaded ZnO/SnO₂ Core-Shell Nanorods on Flat Alumina Substrates.
    Ju DX; Xu HY; Qiu ZW; Zhang ZC; Xu Q; Zhang J; Wang JQ; Cao BQ
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19163-71. PubMed ID: 26280916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PdO/PdO
    Lupan O; Postica V; Hoppe M; Wolff N; Polonskyi O; Pauporté T; Viana B; Majérus O; Kienle L; Faupel F; Adelung R
    Nanoscale; 2018 Aug; 10(29):14107-14127. PubMed ID: 29999088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A multi-platform sensor for selective and sensitive H
    Zhou Q; Xu L; Kan Z; Yang L; Chang Z; Dong B; Bai X; Lu G; Song H
    J Hazard Mater; 2022 Mar; 426():128075. PubMed ID: 34959212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ZnO Nanorod Arrays and Hollow Spheres through a Facile Room-Temperature Solution Route and Their Enhanced Ethanol Gas-Sensing Properties.
    Bao D; Gao P; Wang L; Wang Y; Chen Y; Chen G; Li G; Chang C; Qin W
    Chempluschem; 2013 Oct; 78(10):1266-1272. PubMed ID: 31986785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel material concepts of transducers for chemical and biosensors.
    Yakimova R; Steinhoff G; Petoral RM; Vahlberg C; Khranovskyy V; Yazdi GR; Uvdal K; Lloyd Spetz A
    Biosens Bioelectron; 2007 Jun; 22(12):2780-5. PubMed ID: 17289367
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chlorine Gas Sensing Performance of On-Chip Grown ZnO, WO3, and SnO2 Nanowire Sensors.
    Tran VD; Nguyen DH; Nguyen VD; Nguyen VH
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4828-37. PubMed ID: 26816341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low Working Temperature of ZnO-MoS
    Wang S; Chen W; Li J; Song Z; Zhang H; Zeng W
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32977597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.