These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 29320434)

  • 1. Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle.
    Ito S; Hiratsuka S; Ohta M; Matsubara H; Ogawa M
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29320434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems.
    Takai I; Matsubara H; Soga M; Ohta M; Ogawa M; Yamashita T
    Sensors (Basel); 2016 Mar; 16(4):459. PubMed ID: 27043569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SPADnet: deep RGB-SPAD sensor fusion assisted by monocular depth estimation.
    Sun Z; Lindell DB; Solgaard O; Wetzstein G
    Opt Express; 2020 May; 28(10):14948-14962. PubMed ID: 32403527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Background Light Rejection in SPAD-Based LiDAR Sensors by Adaptive Photon Coincidence Detection.
    Beer M; Haase JF; Ruskowski J; Kokozinski R
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Model of SPAD-Based Direct Time-of-Flight Flash LIDAR CMOS Image Sensors.
    Tontini A; Gasparini L; Perenzoni M
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32932624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Scale Histogram-Based Probabilistic Deep Neural Network for Super-Resolution 3D LiDAR Imaging.
    Sun M; Zhuo S; Chiang PY
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spot Tracking and TDC Sharing in SPAD Arrays for TOF LiDAR.
    Sesta V; Severini F; Villa F; Lussana R; Zappa F; Nakamuro K; Matsui Y
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CMOS SPAD Imager with Collision Detection and 128 Dynamically Reallocating TDCs for Single-Photon Counting and 3D Time-of-Flight Imaging.
    Zhang C; Lindner S; Antolovic IM; Wolf M; Charbon E
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 256 × 256 LiDAR Imaging System Based on a 200 mW SPAD-Based SoC with Microlens Array and Lightweight RGB-Guided Depth Completion Neural Network.
    Wang J; Li J; Wu Y; Yu H; Cui L; Sun M; Chiang PY
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D LIDAR imaging using Ge-on-Si single-photon avalanche diode detectors.
    Kuzmenko K; Vines P; Halimi A; Collins RJ; Maccarone A; McCarthy A; Greener ZM; Kirdoda J; Dumas DCS; Llin LF; Mirza MM; Millar RW; Paul DJ; Buller GS
    Opt Express; 2020 Jan; 28(2):1330-1344. PubMed ID: 32121846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SPADs and SiPMs Arrays for Long-Range High-Speed Light Detection and Ranging (LiDAR).
    Villa F; Severini F; Madonini F; Zappa F
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34206130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subsurface fluorescence time-of-flight imaging using a large-format single-photon avalanche diode sensor for tumor depth assessment.
    Petusseau AF; Streeter SS; Ulku A; Feng Y; Samkoe KS; Bruschini C; Charbon E; Pogue BW; Bruza P
    J Biomed Opt; 2024 Jan; 29(1):016004. PubMed ID: 38235320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust super-resolution depth imaging via a multi-feature fusion deep network.
    Ruget A; McLaughlin S; Henderson RK; Gyongy I; Halimi A; Leach J
    Opt Express; 2021 Apr; 29(8):11917-11937. PubMed ID: 33984963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Custom-Technology Single-Photon Avalanche Diode Linear Detector Array for Underwater Depth Imaging.
    Maccarone A; Acconcia G; Steinlehner U; Labanca I; Newborough D; Rech I; Buller GS
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconfigurable coaxial single-photon LIDAR based on the SPAD array.
    Xue R; Kang Y; Li W; Meng F; Wang X; Li L; Zhao W; Zhang T
    Appl Opt; 2023 Aug; 62(22):5910-5916. PubMed ID: 37706942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications.
    Padmanabhan P; Zhang C; Charbon E
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indirect Time-of-Flight with GHz Correlation Frequency and Integrated SPAD Reaching Sub-100 µm Precision in 0.35 µm CMOS.
    Hauser M; Zimmermann H; Hofbauer M
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical Modelling of SPADs for Time-of-Flight LiDAR.
    Incoronato A; Locatelli M; Zappa F
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coded-pulse-bunch-laser-based single-photon lidar for fast long-distance ranging.
    Ding Y; Wu H; Gao X; Wu B; Shen Y
    J Opt Soc Am A Opt Image Sci Vis; 2022 Feb; 39(2):206-212. PubMed ID: 35200953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.