These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 29320626)

  • 21. Deficiency of liver sinusoidal scavenger receptors stabilin-1 and -2 in mice causes glomerulofibrotic nephropathy via impaired hepatic clearance of noxious blood factors.
    Schledzewski K; Géraud C; Arnold B; Wang S; Gröne HJ; Kempf T; Wollert KC; Straub BK; Schirmacher P; Demory A; Schönhaber H; Gratchev A; Dietz L; Thierse HJ; Kzhyshkowska J; Goerdt S
    J Clin Invest; 2011 Feb; 121(2):703-14. PubMed ID: 21293057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stabilin-1, a homeostatic scavenger receptor with multiple functions.
    Kzhyshkowska J; Gratchev A; Goerdt S
    J Cell Mol Med; 2006; 10(3):635-49. PubMed ID: 16989725
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reciprocal upregulation of scavenger receptors complicates interpretation of nanoparticle uptake in non-phagocytic cells.
    Prapainop K; Miao R; Åberg C; Salvati A; Dawson KA
    Nanoscale; 2017 Aug; 9(31):11261-11268. PubMed ID: 28758667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hyaluronic acid receptor Stabilin-2 regulates Erk phosphorylation and arterial--venous differentiation in zebrafish.
    Rost MS; Sumanas S
    PLoS One; 2014; 9(2):e88614. PubMed ID: 24586357
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recognition of dextran-superparamagnetic iron oxide nanoparticle conjugates (Feridex) via macrophage scavenger receptor charged domains.
    Chao Y; Makale M; Karmali PP; Sharikov Y; Tsigelny I; Merkulov S; Kesari S; Wrasidlo W; Ruoslahti E; Simberg D
    Bioconjug Chem; 2012 May; 23(5):1003-9. PubMed ID: 22515422
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deconvolving Passive and Active Targeting of Liposomes Bearing LDL Receptor Binding Peptides Using the Zebrafish Embryo Model.
    Bi D; Van Hal A; Aschmann D; Shen M; Zhang H; Su L; Arias-Alpizar G; Kros A; Barz M; Bussmann J
    Small; 2024 Aug; 20(32):e2310781. PubMed ID: 38488770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FcRn Rescues Recombinant Factor VIII Fc Fusion Protein from a VWF Independent FVIII Clearance Pathway in Mouse Hepatocytes.
    van der Flier A; Liu Z; Tan S; Chen K; Drager D; Liu T; Patarroyo-White S; Jiang H; Light DR
    PLoS One; 2015; 10(4):e0124930. PubMed ID: 25905473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An in vitro and in vivo study of peptide-functionalized nanoparticles for brain targeting: The importance of selective blood-brain barrier uptake.
    Bode GH; Coué G; Freese C; Pickl KE; Sanchez-Purrà M; Albaiges B; Borrós S; van Winden EC; Tziveleka LA; Sideratou Z; Engbersen JFJ; Singh S; Albrecht K; Groll J; Möller M; Pötgens AJG; Schmitz C; Fröhlich E; Grandfils C; Sinner FM; Kirkpatrick CJ; Steinbusch HWM; Frank HG; Unger RE; Martinez-Martinez P
    Nanomedicine; 2017 Apr; 13(3):1289-1300. PubMed ID: 27884636
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zebrafish as a predictive screening model to assess macrophage clearance of liposomes in vivo.
    Sieber S; Grossen P; Uhl P; Detampel P; Mier W; Witzigmann D; Huwyler J
    Nanomedicine; 2019 Apr; 17():82-93. PubMed ID: 30659929
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting of Hepatic Macrophages by Therapeutic Nanoparticles.
    Colino CI; Lanao JM; Gutierrez-Millan C
    Front Immunol; 2020; 11():218. PubMed ID: 32194546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring LA-ICP-MS as a quantitative imaging technique to study nanoparticle uptake in Daphnia magna and zebrafish (Danio rerio) embryos.
    Böhme S; Stärk HJ; Kühnel D; Reemtsma T
    Anal Bioanal Chem; 2015 Jul; 407(18):5477-85. PubMed ID: 25943260
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Developmental expression and immune role of the class B scavenger receptor cd36 in zebrafish.
    Liu K; Xu Y; Wang Y; Wei S; Feng D; Huang Q; Zhang S; Liu Z
    Dev Comp Immunol; 2016 Jul; 60():91-5. PubMed ID: 26915754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endothelial signals modulate hepatocyte apicobasal polarization in zebrafish.
    Sakaguchi TF; Sadler KC; Crosnier C; Stainier DY
    Curr Biol; 2008 Oct; 18(20):1565-71. PubMed ID: 18951027
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cooperation of liver cells in health and disease.
    Kmieć Z
    Adv Anat Embryol Cell Biol; 2001; 161():III-XIII, 1-151. PubMed ID: 11729749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mercury (II) impairs nucleotide excision repair (NER) in zebrafish (Danio rerio) embryos by targeting primarily at the stage of DNA incision.
    Chang Y; Lee WY; Lin YJ; Hsu T
    Aquat Toxicol; 2017 Nov; 192():97-104. PubMed ID: 28942072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell surface biotinylation to identify the receptors involved in nanoparticle uptake into endothelial cells.
    Aliyandi A; Reker-Smit C; Zuhorn IS; Salvati A
    Acta Biomater; 2023 Jan; 155():507-520. PubMed ID: 36371002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel lipid-based drug carrier targeted to the non-parenchymal cells, including hepatic stellate cells, in the fibrotic livers of bile duct ligated rats.
    Adrian JE; Kamps JA; Scherphof GL; Meijer DK; van Loenen-Weemaes AM; Reker-Smit C; Terpstra P; Poelstra K
    Biochim Biophys Acta; 2007 Jun; 1768(6):1430-9. PubMed ID: 17493581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase-Separated Liposomes Hijack Endogenous Lipoprotein Transport and Metabolism Pathways to Target Subsets of Endothelial Cells In Vivo.
    Arias-Alpizar G; Papadopoulou P; Rios X; Pulagam KR; Moradi MA; Pattipeiluhu R; Bussmann J; Sommerdijk N; Llop J; Kros A; Campbell F
    Adv Healthc Mater; 2023 Apr; 12(10):e2202709. PubMed ID: 36565694
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Zebrafish Embryos as a Predictive Animal Model to Study Nanoparticle Behavior
    Arias-Alpizar G; Bussmann J; Campbell F
    Bio Protoc; 2021 Oct; 11(19):e4173. PubMed ID: 34722820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenotypical and biochemical characterization of murine psoriasiform and fibrotic skin disease models in Stabilin-deficient mice.
    Krzistetzko J; Géraud C; Dormann C; Riedel A; Leibing T
    FEBS Open Bio; 2024 Jun; ():. PubMed ID: 38946049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.