These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 29320733)

  • 1. DNA Unwinding Is the Primary Determinant of CRISPR-Cas9 Activity.
    Gong S; Yu HH; Johnson KA; Taylor DW
    Cell Rep; 2018 Jan; 22(2):359-371. PubMed ID: 29320733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated Actions of Cas9 HNH and RuvC Nuclease Domains Are Regulated by the Bridge Helix and the Target DNA Sequence.
    Babu K; Kathiresan V; Kumari P; Newsom S; Parameshwaran HP; Chen X; Liu J; Qin PZ; Rajan R
    Biochemistry; 2021 Dec; 60(49):3783-3800. PubMed ID: 34757726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage.
    Jiang F; Taylor DW; Chen JS; Kornfeld JE; Zhou K; Thompson AJ; Nogales E; Doudna JA
    Science; 2016 Feb; 351(6275):867-71. PubMed ID: 26841432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into DNA cleavage activation of CRISPR-Cas9 system.
    Huai C; Li G; Yao R; Zhang Y; Cao M; Kong L; Jia C; Yuan H; Chen H; Lu D; Huang Q
    Nat Commun; 2017 Nov; 8(1):1375. PubMed ID: 29123204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9.
    Raper AT; Stephenson AA; Suo Z
    J Am Chem Soc; 2018 Feb; 140(8):2971-2984. PubMed ID: 29442507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single molecule methods for studying CRISPR Cas9-induced DNA unwinding.
    Okafor IC; Choi J; Ha T
    Methods; 2022 Aug; 204():319-326. PubMed ID: 34767923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic characterization of Cas9 enzymes.
    Liu MS; Gong S; Yu HH; Taylor DW; Johnson KA
    Methods Enzymol; 2019; 616():289-311. PubMed ID: 30691648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
    Fonfara I; Richter H; Bratovič M; Le Rhun A; Charpentier E
    Nature; 2016 Apr; 532(7600):517-21. PubMed ID: 27096362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of RNA Binding Partners of CRISPR-Cas Proteins in Prokaryotes Using RIP-Seq.
    Sharma S; Sharma CM
    Methods Mol Biol; 2022; 2404():111-133. PubMed ID: 34694606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AcrIIC4 inhibits type II-C Cas9 by preventing R-loop formation.
    Sun W; Cheng Z; Wang J; Yang J; Li X; Wang J; Chen M; Yang X; Sheng G; Lou J; Wang Y
    Proc Natl Acad Sci U S A; 2023 Aug; 120(31):e2303675120. PubMed ID: 37494395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational control of DNA target cleavage by CRISPR-Cas9.
    Sternberg SH; LaFrance B; Kaplan M; Doudna JA
    Nature; 2015 Nov; 527(7576):110-3. PubMed ID: 26524520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Basis for Reduced Dynamics of Three Engineered HNH Endonuclease Lys-to-Ala Mutants for the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Associated 9 (CRISPR/Cas9) Enzyme.
    Wang J; Skeens E; Arantes PR; Maschietto F; Allen B; Kyro GW; Lisi GP; Palermo G; Batista VS
    Biochemistry; 2022 May; 61(9):785-794. PubMed ID: 35420793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR RNA Array-Guided Multisite Cleavage for Gene Disruption by Cas9 and Cpf1.
    Wang D; Ma D; Han J; Kong L; Li LY; Xi Z
    Chembiochem; 2018 Oct; 19(20):2195-2205. PubMed ID: 30088313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-Specific Labeling Reveals Cas9 Induces Partial Unwinding Without RNA/DNA Pairing in Sequences Distal to the PAM.
    Li Y; Liu Y; Singh J; Tangprasertchai NS; Trivedi R; Fang Y; Qin PZ
    CRISPR J; 2022 Apr; 5(2):341-352. PubMed ID: 35352981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cas9 interrogates DNA in discrete steps modulated by mismatches and supercoiling.
    Ivanov IE; Wright AV; Cofsky JC; Aris KDP; Doudna JA; Bryant Z
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5853-5860. PubMed ID: 32123105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Points of View on the Tools for Genome/Gene Editing.
    Chuang CK; Lin WM
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex.
    Zeng Y; Cui Y; Zhang Y; Zhang Y; Liang M; Chen H; Lan J; Song G; Lou J
    Nucleic Acids Res; 2018 Jan; 46(1):350-361. PubMed ID: 29145633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Type II and type V CRISPR effector nucleases from a structural biologist's perspective.
    Fernandes H; Pastor M; Bochtler M
    Postepy Biochem; 2016; 62(3):315-326. PubMed ID: 28132486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.
    Jinek M; Chylinski K; Fonfara I; Hauer M; Doudna JA; Charpentier E
    Science; 2012 Aug; 337(6096):816-21. PubMed ID: 22745249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-CRISPR AcrIIC3 discriminates between Cas9 orthologs via targeting the variable surface of the HNH nuclease domain.
    Kim Y; Lee SJ; Yoon HJ; Kim NK; Lee BJ; Suh JY
    FEBS J; 2019 Dec; 286(23):4661-4674. PubMed ID: 31389128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.