These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 29320857)

  • 1. Microhydration of 2-Naphthol at Ground, First Excited Triplet, and First Excited Singlet States: A Case Study on Photo Acids.
    Krishnakumar P; Kar R; Maity DK
    J Phys Chem A; 2018 Feb; 122(4):929-936. PubMed ID: 29320857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Singlet and triplet excited states and intersystem crossing in free-base porphyrin: TDDFT and DFT/MRCI study.
    Perun S; Tatchen J; Marian CM
    Chemphyschem; 2008 Feb; 9(2):282-92. PubMed ID: 18189251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 1. Full configuration interaction (CI) excited-state relaxation dynamics of hydrated dielectrons.
    Larsen RE; Schwartz BJ
    J Phys Chem B; 2006 May; 110(19):9681-91. PubMed ID: 16686519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model studies of hydrogen atom addition and abstraction processes involving ortho-, meta-, and para-benzynes.
    Clark AE; Davidson ER
    J Am Chem Soc; 2001 Oct; 123(43):10691-8. PubMed ID: 11674001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study of singlet and triplet excitation energies in oligothiophenes.
    Fabiano E; Sala FD; Cingolani R; Weimer M; Görling A
    J Phys Chem A; 2005 Apr; 109(13):3078-85. PubMed ID: 16833632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of excited state proton dissociation in microhydrated hydroxylamine clusters.
    Thisuwan J; Suwannakham P; Lao-ngam C; Sagarik K
    Phys Chem Chem Phys; 2016 Feb; 18(7):5564-79. PubMed ID: 26862862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study on the size dependence of excited state proton transfer in 1-naphthol-ammonia clusters.
    Shimizu T; Yoshikawa S; Hashimoto K; Miyazaki M; Fujii M
    J Phys Chem B; 2015 Feb; 119(6):2415-24. PubMed ID: 25211706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of excited-state proton transfer in 1-naphthol-piperidine clusters.
    Shimizu T; Manita S; Yoshikawa S; Hashimoto K; Miyazaki M; Fujii M
    Phys Chem Chem Phys; 2015 Oct; 17(38):25393-402. PubMed ID: 26358374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intersystem crossings of the triplet and singlet States in cobalt and copper mononitrosyls.
    Uzunova EL
    J Phys Chem A; 2009 Oct; 113(42):11266-72. PubMed ID: 19788202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronically Excited States of Neutral, Protonated α-Naphthol and Their Water Clusters: A Theoretical Study.
    Omidyan R; Heidari Z; Salehi M; Azimi G
    J Phys Chem A; 2015 Jun; 119(25):6650-60. PubMed ID: 26024320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydration-dependent structural deformation of guanine in the electronic singlet excited state.
    Shukla MK; Leszczynski J
    J Phys Chem B; 2008 Apr; 112(16):5139-52. PubMed ID: 18380499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ground- and excited-state proton transfer and rotamerism in 2-(2-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole and its O/"NH or S"-substituted derivatives.
    Yang Z; Yang S; Zhang J
    J Phys Chem A; 2007 Jul; 111(28):6354-60. PubMed ID: 17583324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ground and Excited States Of OH(-)(H2O)n Clusters.
    Zanuttini D; Gervais B
    J Phys Chem A; 2015 Jul; 119(29):8188-201. PubMed ID: 26091355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protonated Ground-State Singlet
    Ma X; Feng E; Jiang H; Boulos VM; Gao J; Nash JJ; Kenttämaa HI
    J Org Chem; 2021 Feb; 86(4):3249-3260. PubMed ID: 33555870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmark of Bethe-Salpeter for Triplet Excited-States.
    Jacquemin D; Duchemin I; Blondel A; Blase X
    J Chem Theory Comput; 2017 Feb; 13(2):767-783. PubMed ID: 28107000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TDDFT study on the excited-state proton transfer of 8-hydroxyquinoline: key role of the excited-state hydrogen-bond strengthening.
    Lan SC; Liu YH
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():49-53. PubMed ID: 25554951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DFT/TDDFT exploration of the potential energy surfaces of the ground state and excited states of Fe2(S2C3H6)(CO)6: a simple functional model of the [FeFe] hydrogenase active site.
    Bertini L; Greco C; De Gioia L; Fantucci P
    J Phys Chem A; 2009 May; 113(19):5657-70. PubMed ID: 19378958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excited state proton transfer in guanine in the gas phase and in water solution: a theoretical study.
    Shukla MK; Leszczynski J
    J Phys Chem A; 2005 Sep; 109(34):7775-80. PubMed ID: 16834154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functional studies of the ground- and excited-state potential-energy curves of stilbene cis-trans isomerization.
    Han WG; Lovell T; Liu T; Noodleman L
    Chemphyschem; 2002 Feb; 3(2):167-78. PubMed ID: 12503124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excited-state dynamics of nitrated push-pull molecules: the importance of the relative energy of the singlet and triplet manifolds.
    Collado-Fregoso E; Zugazagoitia JS; Plaza-Medina EF; Peon J
    J Phys Chem A; 2009 Dec; 113(48):13498-508. PubMed ID: 19839627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.