BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 29321101)

  • 1. Bioremediation and detoxification of industrial wastes by earthworms: Vermicompost as powerful crop nutrient in sustainable agriculture.
    Bhat SA; Singh S; Singh J; Kumar S; Bhawana ; Vig AP
    Bioresour Technol; 2018 Mar; 252():172-179. PubMed ID: 29321101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioconversion of herbal industry waste into vermicompost using an epigeic earthworm Eudrilus eugeniae.
    Kumari M; Kumar S; Chauhan RS; Ravikanth K
    Waste Manag Res; 2011 Nov; 29(11):1205-12. PubMed ID: 20952444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vermistabilization of sugar beet (Beta vulgaris L) waste produced from sugar factory using earthworm Eisenia fetida: Genotoxic assessment by Allium cepa test.
    Bhat SA; Singh J; Vig AP
    Environ Sci Pollut Res Int; 2015 Aug; 22(15):11236-54. PubMed ID: 25794577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comprehensive Review of the Fate of Pathogens during Vermicomposting of Organic Wastes.
    Swati A; Hait S
    J Environ Qual; 2018 Jan; 47(1):16-29. PubMed ID: 29415111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centrality of cattle solid wastes in vermicomposting technology - A cleaner resource recovery and biowaste recycling option for agricultural and environmental sustainability.
    Yuvaraj A; Thangaraj R; Ravindran B; Chang SW; Karmegam N
    Environ Pollut; 2021 Jan; 268(Pt A):115688. PubMed ID: 33039975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of vermicompost in organic farming: overview, effects on soil and economics.
    Lim SL; Wu TY; Lim PN; Shak KP
    J Sci Food Agric; 2015 Apr; 95(6):1143-56. PubMed ID: 25130895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pilot-scale vermicomposting of pineapple wastes with earthworms native to Accra, Ghana.
    Mainoo NO; Barrington S; Whalen JK; Sampedro L
    Bioresour Technol; 2009 Dec; 100(23):5872-5. PubMed ID: 19620003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of nutrient recovery from industrial sludge by vermicomposting technology.
    Yadav A; Garg VK
    J Hazard Mater; 2009 Aug; 168(1):262-8. PubMed ID: 19297091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recycling of lignocellulosic waste as vermicompost using earthworm Eisenia fetida.
    Sharma K; Garg VK
    Environ Sci Pollut Res Int; 2019 May; 26(14):14024-14035. PubMed ID: 30852751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimental study of vermi-biowaste composting for agricultural soil improvement.
    Padmavathiamma PK; Li LY; Kumari UR
    Bioresour Technol; 2008 Apr; 99(6):1672-81. PubMed ID: 17560781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic waste recycling by vermicomposting amended with rock phosphate impacts the stability and maturity indices of vermicompost.
    Kumar R; Jha S; Singh SP; Kumar M; Kumari R; Padbhushan R
    J Air Waste Manag Assoc; 2023 Jul; 73(7):553-567. PubMed ID: 37104721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of microbial diversity and plant growth hormones in compost and vermicompost from fermented tannery waste.
    Ravindran B; Wong JW; Selvam A; Sekaran G
    Bioresour Technol; 2016 Oct; 217():200-4. PubMed ID: 27013190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.).
    Sharma K; Garg VK
    Bioresour Technol; 2018 Feb; 250():708-715. PubMed ID: 29223091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vermicomposting with microbial amendment: implications for bioremediation of industrial and agricultural waste.
    Vyas P; Sharma S; Gupta J
    BioTechnologia (Pozn); 2022; 103(2):203-215. PubMed ID: 36606071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiality of Eisenia fetida to degrade disposable paper cups-an ecofriendly solution to solid waste pollution.
    Arumugam K; Ganesan S; Muthunarayanan V; Vivek S; Sugumar S; Munusamy V
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):2868-76. PubMed ID: 25220767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vermicomposting as an advanced biological treatment for industrial waste from the leather industry.
    Nunes RR; Bontempi RM; Mendonça G; Galetti G; Rezende MO
    J Environ Sci Health B; 2016; 51(5):271-7. PubMed ID: 26828795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel technology for separating live earthworm from vermicompost: Experiment, mechanism analysis, and simulation.
    Lin J; Zhao S; Yuan Q
    Waste Manag; 2021 Jul; 131():50-60. PubMed ID: 34098498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-optimization of the carbon-to-nitrogen ratio for efficient vermicomposting of chicken manure and waste paper using Eisenia fetida.
    Ravindran B; Mnkeni PN
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):16965-76. PubMed ID: 27197657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and microbiological changes during vermicomposting of coffee pulp using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis) species.
    Raphael K; Velmourougane K
    Biodegradation; 2011 Jun; 22(3):497-507. PubMed ID: 20922463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of total coliform numbers during vermicomposting is caused by short-term direct effects of earthworms on microorganisms and depends on the dose of application of pig slurry.
    Monroy F; Aira M; Domínguez J
    Sci Total Environ; 2009 Oct; 407(20):5411-6. PubMed ID: 19640567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.