BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29321392)

  • 21. Attenuation of inflammatory and neuropathic pain behaviors in mice through activation of free fatty acid receptor GPR40.
    Karki P; Kurihara T; Nakamachi T; Watanabe J; Asada T; Oyoshi T; Shioda S; Yoshimura M; Arita K; Miyata A
    Mol Pain; 2015 Feb; 11():6. PubMed ID: 25889021
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual effects of the non-esterified fatty acid receptor 'GPR40' for human health.
    Yamashima T
    Prog Lipid Res; 2015 Apr; 58():40-50. PubMed ID: 25615413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting of free fatty acid receptor 1 in EOC: A novel strategy to restrict the adipocyte-EOC dependence.
    Munkarah A; Mert I; Chhina J; Hamid S; Poisson L; Hensley-Alford S; Giri S; Rattan R
    Gynecol Oncol; 2016 Apr; 141(1):72-9. PubMed ID: 27016232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GPR40 full agonism exerts feeding suppression and weight loss through afferent vagal nerve.
    Ueno H; Ito R; Abe SI; Ogino H; Maruyama M; Miyashita H; Miyamoto Y; Moritoh Y; Tsujihata Y; Takeuchi K; Nishigaki N
    PLoS One; 2019; 14(9):e0222653. PubMed ID: 31525244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Advances in Development of GPR40 Modulators (FFA1/FFAR1): An Emerging Target for Type 2 Diabetes.
    Sharma N; Bhagat S; Chundawat TS
    Mini Rev Med Chem; 2017; 17(11):947-958. PubMed ID: 28117025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of polyunsaturated fatty acids and GPR40 receptor in brain.
    Khan MZ; He L
    Neuropharmacology; 2017 Feb; 113(Pt B):639-651. PubMed ID: 26005184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Docosahexaenoic acid modulates brain-derived neurotrophic factor via GPR40 in the brain and alleviates diabesity-associated learning and memory deficits in mice.
    Sona C; Kumar A; Dogra S; Kumar BA; Umrao D; Yadav PN
    Neurobiol Dis; 2018 Oct; 118():94-107. PubMed ID: 29981843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The possibility of a novel pain control system through brain long chain fatty acid receptor GPR40/FFAR1].
    Nakamoto K; Tokuyama S
    Nihon Yakurigaku Zasshi; 2015 Dec; 146(6):302-8. PubMed ID: 26657120
    [No Abstract]   [Full Text] [Related]  

  • 29. FFAR1/GPR40 Contributes to the Regulation of Striatal Monoamine Releases and Facilitation of Cocaine-Induced Locomotor Activity in Mice.
    Sadamura Y; Thapa S; Mizunuma R; Kambe Y; Hirasawa A; Nakamoto K; Tokuyama S; Yoshimoto K; Arita K; Miyata A; Oyoshi T; Kurihara T
    Front Pharmacol; 2021; 12():699026. PubMed ID: 34489696
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloning, identification and functional characterization of bovine free fatty acid receptor-1 (FFAR1/GPR40) in neutrophils.
    Manosalva C; Mena J; Velasquez Z; Colenso CK; Brauchi S; Burgos RA; Hidalgo MA
    PLoS One; 2015; 10(3):e0119715. PubMed ID: 25790461
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Possible involvement of FFAR1 signaling in mouse emotional behaviors through the regulation of brain monoamine releases].
    Kurihara T
    Nihon Yakurigaku Zasshi; 2023; 158(6):454-459. PubMed ID: 37914322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiology and therapeutics of the free fatty acid receptor GPR40.
    Huang H; Dai MH; Tao YX
    Prog Mol Biol Transl Sci; 2014; 121():67-94. PubMed ID: 24373235
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FFAR1 is involved in both the acute and chronic effects of palmitate on insulin secretion.
    Kristinsson H; Smith DM; Bergsten P; Sargsyan E
    Endocrinology; 2013 Nov; 154(11):4078-88. PubMed ID: 24035997
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phytanic acid and pristanic acid, branched-chain fatty acids associated with Refsum disease and other inherited peroxisomal disorders, mediate intracellular Ca2+ signaling through activation of free fatty acid receptor GPR40.
    Kruska N; Reiser G
    Neurobiol Dis; 2011 Aug; 43(2):465-72. PubMed ID: 21570468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flow cytometry-based binding assay for GPR40 (FFAR1; free fatty acid receptor 1).
    Hara T; Hirasawa A; Sun Q; Koshimizu TA; Itsubo C; Sadakane K; Awaji T; Tsujimoto G
    Mol Pharmacol; 2009 Jan; 75(1):85-91. PubMed ID: 18927207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lack of FFAR1/GPR40 does not protect mice from high-fat diet-induced metabolic disease.
    Lan H; Hoos LM; Liu L; Tetzloff G; Hu W; Abbondanzo SJ; Vassileva G; Gustafson EL; Hedrick JA; Davis HR
    Diabetes; 2008 Nov; 57(11):2999-3006. PubMed ID: 18678612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DHA promotes the neuronal differentiation of rat neural stem cells transfected with GPR40 gene.
    Ma D; Zhang M; Larsen CP; Xu F; Hua W; Yamashima T; Mao Y; Zhou L
    Brain Res; 2010 May; 1330():1-8. PubMed ID: 20211608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The involvement of brain fatty acid-GPR40/FFAR1 signaling in the stress-induced chronic pain].
    Nakamoto K; Tokuyama S
    Nihon Yakurigaku Zasshi; 2023; 158(6):449-453. PubMed ID: 37914321
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimulation of insulin secretion by acetylenic fatty acids in insulinoma MIN6 cells through FFAR1.
    Nishino K; Uesugi H; Hirasawa A; Ohtera A; Miyamae Y; Neffati M; Isoda H; Kambe T; Masuda S; Irie K; Nagao M
    Biochem Biophys Res Commun; 2020 Jan; 522(1):68-73. PubMed ID: 31740001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Omega-3 fatty acids are able to modulate the painful symptoms associated to cyclophosphamide-induced-hemorrhagic cystitis in mice.
    Freitas RD; Costa KM; Nicoletti NF; Kist LW; Bogo MR; Campos MM
    J Nutr Biochem; 2016 Jan; 27():219-32. PubMed ID: 26482705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.