These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 29321455)

  • 21. Design considerations for reducing sample loss in microfluidic paper-based analytical devices.
    Nguyen MP; Meredith NA; Kelly SP; Henry CS
    Anal Chim Acta; 2018 Aug; 1017():20-25. PubMed ID: 29534791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzyme embedded microfluidic paper-based analytic device (μPAD): a comprehensive review.
    Nadar SS; Patil PD; Tiwari MS; Ahirrao DJ
    Crit Rev Biotechnol; 2021 Nov; 41(7):1046-1080. PubMed ID: 33730940
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of a microfluidic paper-based analytical device by silanization of filter cellulose using a paper mask for glucose assay.
    Cai L; Wang Y; Wu Y; Xu C; Zhong M; Lai H; Huang J
    Analyst; 2014 Sep; 139(18):4593-8. PubMed ID: 25045759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast and flexible strategy to produce electrochemical paper-based analytical devices using a craft cutter printer to create wax barrier and screen-printed electrodes.
    de Oliveira TR; Fonseca WT; de Oliveira Setti G; Faria RC
    Talanta; 2019 Apr; 195():480-489. PubMed ID: 30625573
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-cost, high-throughput fabrication of cloth-based microfluidic devices using a photolithographical patterning technique.
    Wu P; Zhang C
    Lab Chip; 2015 Mar; 15(6):1598-608. PubMed ID: 25656508
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a microfluidic paper-based analytical device for the determination of salivary aldehydes.
    Ramdzan AN; Almeida MIGS; McCullough MJ; Kolev SD
    Anal Chim Acta; 2016 May; 919():47-54. PubMed ID: 27086098
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D Printed Paper-Based Microfluidic Analytical Devices.
    He Y; Gao Q; Wu WB; Nie J; Fu JZ
    Micromachines (Basel); 2016 Jun; 7(7):. PubMed ID: 30404282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing.
    Mohammadi S; Maeki M; Mohamadi RM; Ishida A; Tani H; Tokeshi M
    Analyst; 2015 Oct; 140(19):6493-9. PubMed ID: 26207925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Raman Characterization of Nanoparticle Transport in Microfluidic Paper-Based Analytical Devices (μPADs).
    Lahr RH; Wallace GC; Vikesland PJ
    ACS Appl Mater Interfaces; 2015 May; 7(17):9139-46. PubMed ID: 25853463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simple method for patterning poly(dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps.
    Dornelas KL; Dossi N; Piccin E
    Anal Chim Acta; 2015 Feb; 858():82-90. PubMed ID: 25597806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One-Step Hot Microembossing for Fabrication of Paper-Based Microfluidic Chips in 10 Seconds.
    Juang YJ; Wang Y; Hsu SK
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33120953
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices.
    Yang X; Forouzan O; Brown TP; Shevkoplyas SS
    Lab Chip; 2012 Jan; 12(2):274-80. PubMed ID: 22094609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical microfluidic paper-based analytical devices for cancer biomarker detection: From 2D to 3D sensing systems.
    Ebrahimi G; Pakchin PS; Mota A; Omidian H; Omidi Y
    Talanta; 2023 May; 257():124370. PubMed ID: 36858013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A cost-effective Z-folding controlled liquid handling microfluidic paper analysis device for pathogen detection via ATP quantification.
    Jin SQ; Guo SM; Zuo P; Ye BC
    Biosens Bioelectron; 2015 Jan; 63():379-383. PubMed ID: 25127472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving Sample Distribution Homogeneity in Three-Dimensional Microfluidic Paper-Based Analytical Devices by Rational Device Design.
    Morbioli GG; Mazzu-Nascimento T; Milan LA; Stockton AM; Carrilho E
    Anal Chem; 2017 May; 89(9):4786-4792. PubMed ID: 28401754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping.
    Songjaroen T; Dungchai W; Chailapakul O; Laiwattanapaisal W
    Talanta; 2011 Oct; 85(5):2587-93. PubMed ID: 21962687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-throughput deposition of chemical reagents via pen-plotting technique for microfluidic paper-based analytical devices.
    Rahbar M; Nesterenko PN; Paull B; Macka M
    Anal Chim Acta; 2019 Jan; 1047():115-123. PubMed ID: 30567641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Versatile fabrication of paper-based microfluidic devices with high chemical resistance using scholar glue and magnetic masks.
    Cardoso TMG; de Souza FR; Garcia PT; Rabelo D; Henry CS; Coltro WKT
    Anal Chim Acta; 2017 Jun; 974():63-68. PubMed ID: 28535882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-step batch fabrication of microfluidic paper-based analytical devices with a 3D printer and their applications in nanoenzyme-enhanced visual detection of dopamine.
    Yan Y; Huang X; Yuan L; Tang Y; Zhu W; Du H; Nie J; Zhang L; Liao S; Tang X; Zhang Y
    Anal Bioanal Chem; 2024 Jul; 416(18):4131-4141. PubMed ID: 38780654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.