These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 29321456)

  • 1. Detection and Quantification of Polyquaterniums via Polyion-Sensitive Ion-Selective Optodes Inkjet Printed on Cellulose Paper.
    Ferguson SA; Wang X; Mahoney M; Meyerhoff ME
    Anal Sci; 2018; 34(1):45-50. PubMed ID: 29321456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manual and Flow-Injection Detection/Quantification of Polyquaterniums via Fully Reversible Polyion-Sensitive Polymeric Membrane-Based Ion-Selective Electrodes.
    Ferguson SA; Meyerhoff ME
    ACS Sens; 2017 Oct; 2(10):1505-1511. PubMed ID: 28862444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and Quantification of Polyquaterniums via Single-Use Polymer Membrane-Based Polyion-Sensitive Electrodes.
    Ferguson SA; Meyerhoff ME
    ACS Sens; 2017 Feb; 2(2):268-273. PubMed ID: 28723131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inkjet-Printed Paper-Based Colorimetric Polyion Sensor Using a Smartphone as a Detector.
    Wang X; Mahoney M; Meyerhoff ME
    Anal Chem; 2017 Nov; 89(22):12334-12341. PubMed ID: 29087689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully inkjet-printed paper-based Pb
    Cui Y; Wang R; Brady B; Wang X
    Anal Bioanal Chem; 2022 Nov; 414(26):7585-7595. PubMed ID: 35997814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inkjet-printed pH-independent paper-based calcium sensor with fluorescence signal readout relying on a solvatochromic dye.
    Shibata H; Ikeda Y; Hiruta Y; Citterio D
    Anal Bioanal Chem; 2020 May; 412(14):3489-3497. PubMed ID: 31773228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticizer-Free Thin-Film Sodium-Selective Optodes Inkjet-Printed on Transparent Plastic for Sweat Analysis.
    Zhang Q; Wang X; Decker V; Meyerhoff ME
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):25616-25624. PubMed ID: 32426973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Ionophore-Based Anion-Selective Optode Printed on Cellulose Paper.
    Wang X; Zhang Q; Nam C; Hickner M; Mahoney M; Meyerhoff ME
    Angew Chem Int Ed Engl; 2017 Sep; 56(39):11826-11830. PubMed ID: 28715617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting Levels of Polyquaternium-10 (PQ-10) via Potentiometric Titration with Dextran Sulphate and Monitoring the Equivalence Point with a Polymeric Membrane-Based Polyion Sensor.
    Ferguson SA; Wang X; Meyerhoff ME
    Anal Methods; 2016 Aug; 8(29):5806-5811. PubMed ID: 28018490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting the pH-Cross Sensitivity of Ion-Selective Optodes to Broaden Their Response Range.
    Steininger F; Palmfeldt J; Koren K; Kalinichev AV
    ACS Sens; 2024 Sep; 9(9):4555-4559. PubMed ID: 39172736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response Mechanism of Hyperpolarization-Based Polyion Nanosensors.
    Soda Y; Robinson KJ; Bakker E
    ACS Sens; 2022 Oct; 7(10):3108-3115. PubMed ID: 36121929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inkjet printed LED based pH chemical sensor for gas sensing.
    O'Toole M; Shepherd R; Wallace GG; Diamond D
    Anal Chim Acta; 2009 Oct; 652(1-2):308-14. PubMed ID: 19786197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of micrometer and submicrometer-sized ion-selective optodes via a solvent displacement process.
    Bychkova V; Shvarev A
    Anal Chem; 2009 Mar; 81(6):2325-31. PubMed ID: 19209909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of a plasticized PVC-based cation-selective optode system into a paper-based analytical device for colorimetric sodium detection.
    Shibata H; Henares TG; Yamada K; Suzuki K; Citterio D
    Analyst; 2018 Feb; 143(3):678-686. PubMed ID: 29299546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully inkjet-printed distance-based paper microfluidic devices for colorimetric calcium determination using ion-selective optodes.
    Shibata H; Hiruta Y; Citterio D
    Analyst; 2019 Feb; 144(4):1178-1186. PubMed ID: 30560965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response Patterns of Chromoionophore-Based Bulk Optodes Containing Lipophilic Electrolytes: Toward Background-Independent pH-Sensing.
    Pokhvishcheva NV; Prozherin IS; Kalinichev AV; Peshkova MA
    ACS Sens; 2023 Aug; 8(8):3086-3094. PubMed ID: 37524060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymerized Nile Blue derivatives for plasticizer-free fluorescent ion optode microsphere sensors.
    Ngeontae W; Xu C; Ye N; Wygladacz K; Aeungmaitrepirom W; Tuntulani T; Bakker E
    Anal Chim Acta; 2007 Sep; 599(1):124-33. PubMed ID: 17765072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inkjet-printed microfluidic multianalyte chemical sensing paper.
    Abe K; Suzuki K; Citterio D
    Anal Chem; 2008 Sep; 80(18):6928-34. PubMed ID: 18698798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate-selective fluorescent sensing microspheres based on uranyl salophene ionophores.
    Wygladacz K; Qin Y; Wroblewski W; Bakker E
    Anal Chim Acta; 2008 Apr; 614(1):77-84. PubMed ID: 18405684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paper-based ion-selective optodes for continuous sensing: Reversible potassium ion monitoring.
    Kassal P; Sigurnjak M; Steinberg IM
    Talanta; 2019 Feb; 193():51-55. PubMed ID: 30368297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.