These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29321489)

  • 21. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes.
    Huang H; Song Z; Wei N; Shi L; Mao Y; Ying Y; Sun L; Xu Z; Peng X
    Nat Commun; 2013; 4():2979. PubMed ID: 24352165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antifouling Bilayer Graphene Slit Membrane for Desalination of Nanoplastic-Infested Seawater: A Molecular Dynamics Simulation Study.
    Toh W; Ang EYM; Ng TY; Lin R; Liu Z
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43965-43974. PubMed ID: 36099535
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding water transport through graphene-based nanochannels via experimental control of slip length.
    Wen X; Foller T; Jin X; Musso T; Kumar P; Joshi R
    Nat Commun; 2022 Sep; 13(1):5690. PubMed ID: 36171227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Continuum and molecular-dynamics simulation of nanodroplet collisions.
    Bardia R; Liang Z; Keblinski P; Trujillo MF
    Phys Rev E; 2016 May; 93(5):053104. PubMed ID: 27300975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphene Oxide Membranes with Conical Nanochannels for Ultrafast Water Transport.
    Ma Y; Su Y; He M; Shi B; Zhang R; Shen J; Jiang Z
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37489-37497. PubMed ID: 30277389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast water transport in graphene nanofluidic channels.
    Xie Q; Alibakhshi MA; Jiao S; Xu Z; Hempel M; Kong J; Park HG; Duan C
    Nat Nanotechnol; 2018 Mar; 13(3):238-245. PubMed ID: 29292381
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flow of quasi-two dimensional water in graphene channels.
    Fang C; Wu X; Yang F; Qiao R
    J Chem Phys; 2018 Feb; 148(6):064702. PubMed ID: 29448779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water flow modeling through a graphene-based nanochannel: theory and simulation.
    Kargar M; Lohrasebi A
    Phys Chem Chem Phys; 2019 Feb; 21(6):3304-3309. PubMed ID: 30687856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene growth under Knudsen molecular flow on a confined catalytic metal coil.
    Bong H; Jo SB; Kang B; Lee SK; Kim HH; Lee SG; Cho K
    Nanoscale; 2015 Jan; 7(4):1314-24. PubMed ID: 25363512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding water permeation in graphene oxide membranes.
    Wei N; Peng X; Xu Z
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5877-83. PubMed ID: 24669772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Commensurability Effects in Viscosity of Nanoconfined Water.
    Neek-Amal M; Peeters FM; Grigorieva IV; Geim AK
    ACS Nano; 2016 Mar; 10(3):3685-92. PubMed ID: 26882095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of the interfacial dynamics of water sandwiched between static and free-standing fully flexible graphene sheets.
    Deshmukh SA; Kamath G; Sankaranarayanan SK
    Soft Matter; 2014 Jun; 10(23):4067-83. PubMed ID: 24845025
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The confined [Bmim][BF
    Wang Y; Huo F; He H; Zhang S
    Phys Chem Chem Phys; 2018 Jul; 20(26):17773-17780. PubMed ID: 29922773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of electric fields on the efficiency of multilayer graphene membrane.
    Kargar M; Khashei Varnamkhasti F; Lohrasebi A
    J Mol Model; 2018 Aug; 24(9):241. PubMed ID: 30121833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrodynamics, wall-slip, and normal-stress differences in rarefied granular Poiseuille flow.
    Gupta R; Alam M
    Phys Rev E; 2017 Feb; 95(2-1):022903. PubMed ID: 28297874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study.
    Jiao S; Xu Z
    ACS Appl Mater Interfaces; 2015 May; 7(17):9052-9. PubMed ID: 25868398
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation.
    Fang Q; Zhou X; Deng W; Zheng Z; Liu Z
    Sci Rep; 2016 Sep; 6():33185. PubMed ID: 27615451
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disentangling the role of athermal walls on the Knudsen paradox in molecular and granular gases.
    Gupta R; Alam M
    Phys Rev E; 2018 Jan; 97(1-1):012912. PubMed ID: 29448368
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular-dynamics study of Poiseuille flow in a nanochannel and calculation of energy and momentum accommodation coefficients.
    Prabha SK; Sathian SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041201. PubMed ID: 22680461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.