BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 29321531)

  • 21. Real-Time Impedance Detection of Intra-Articular Space in a Porcine Model Using a Monopolar Injection Needle.
    Abbasi MA; Kim H; Chinnadayyala SR; Park KD; Cho S
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drilling electrode for real-time measurement of electrical impedance in bone tissues.
    Dai Y; Xue Y; Zhang J
    Ann Biomed Eng; 2014 Mar; 42(3):579-88. PubMed ID: 24254254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of intraneural needle-placement with multiple frequency bioimpedance monitoring: a novel method.
    Kalvøy H; Sauter AR
    J Clin Monit Comput; 2016 Apr; 30(2):185-92. PubMed ID: 25902898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of three kinds of electrode-skin interfaces for electrical impedance scanning.
    Yin Y; Ji Z; Zhang W; Wang N; Fu F; Liu R; You F; Shi X; Dong X
    Ann Biomed Eng; 2010 Jun; 38(6):2032-9. PubMed ID: 20437203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate resistivity mouse brain mapping using microelectrode arrays.
    Béduer A; Joris P; Mosser S; Delattre V; Fraering PC; Renaud P
    Biosens Bioelectron; 2014 Oct; 60():143-53. PubMed ID: 24794406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrical impedance imaging of human muscle at the microscopic scale using a multi-electrode needle device: A simulation study.
    Rutkove SB; Kwon H; Guasch M; Wu JS; Sanchez B
    Clin Neurophysiol; 2018 Aug; 129(8):1704-1708. PubMed ID: 29804914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of Electrical Impedance Spectroscopy-on-a-Needle as a Novel Tool to Determine Optimal Surgical Margin in Partial Nephrectomy.
    Kim HW; Yun J; Lee JZ; Shin DG; Lee JH
    Adv Healthc Mater; 2017 Sep; 6(18):. PubMed ID: 28696572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A New Venous Entry Detection Method Based on Electrical Bio-impedance Sensing.
    Cheng Z; Davies BL; Caldwell DG; Mattos LS
    Ann Biomed Eng; 2018 Oct; 46(10):1558-1567. PubMed ID: 29675812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A biopsy tool with integrated piezoceramic elements for needle tract cauterization and cauterization monitoring.
    Visvanathan K; Li T; Gianchandani YB
    Biomed Microdevices; 2012 Feb; 14(1):55-65. PubMed ID: 21898007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impedance characterization of microarray recording electrodes in vitro.
    Merrill DR; Tresco PA
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1960-5. PubMed ID: 16285400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Minimally invasive silicon probe for electrical impedance measurements in small animals.
    Ivorra A; Gómez R; Noguera N; Villa R; Sola A; Palacios L; Hotter G; Aguiló J
    Biosens Bioelectron; 2003 Dec; 19(4):391-9. PubMed ID: 14615098
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CMOS based whole cell impedance sensing: Challenges and future outlook.
    Hedayatipour A; Aslanzadeh S; McFarlane N
    Biosens Bioelectron; 2019 Oct; 143():111600. PubMed ID: 31479988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Four versus two-electrode measurement strategies for cell growing and differentiation monitoring using electrical impedance spectroscopy.
    Bragós R; Sarro E; Fontova A; Soley A; Cairó J; Bayés-Genís A; Rosell J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2106-9. PubMed ID: 17946497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement of bio-impedance with a smart needle to confirm percutaneous kidney access.
    Hernandez DJ; Sinkov VA; Roberts WW; Allaf ME; Patriciu A; Jarrett TW; Kavoussi LR; Stoianovici D
    J Urol; 2001 Oct; 166(4):1520-3. PubMed ID: 11547124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo intravascular electric impedance spectroscopy using a new catheter with integrated microelectrodes.
    Süselbeck T; Thielecke H; Weinschenk I; Reininger-Mack A; Stieglitz T; Metz J; Borggrefe M; Robitzki A; Haase KK
    Basic Res Cardiol; 2005 Jan; 100(1):28-34. PubMed ID: 15614589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A droplet-based microfluidic electrochemical sensor using platinum-black microelectrode and its application in high sensitive glucose sensing.
    Gu S; Lu Y; Ding Y; Li L; Song H; Wang J; Wu Q
    Biosens Bioelectron; 2014 May; 55():106-12. PubMed ID: 24368227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A needle guidance system for biopsy and therapy using two-dimensional ultrasound.
    Bluvol N; Sheikh A; Kornecki A; Fernandez Ddel R; Downey D; Fenster A
    Med Phys; 2008 Feb; 35(2):617-28. PubMed ID: 18383683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors.
    Wang L; Wang H; Wang L; Mitchelson K; Yu Z; Cheng J
    Biosens Bioelectron; 2008 Sep; 24(1):14-21. PubMed ID: 18511255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of Continuous Electrical Impedance Measurement for Accurate Nerve Block in Rabbits.
    Ootaki C; Kobayashi Y; Koyama Y
    Pain Med; 2021 Apr; 22(4):800-806. PubMed ID: 33616169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A high density microelectrode array biosensor for detection of E. coli O157:H7.
    Radke SM; Alocilja EC
    Biosens Bioelectron; 2005 Feb; 20(8):1662-7. PubMed ID: 15626625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.