These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29321632)

  • 21. Association analysis for resistance to Striga hermonthica in diverse tropical maize inbred lines.
    Stanley AE; Menkir A; Ifie B; Paterne AA; Unachukwu NN; Meseka S; Mengesha WA; Bossey B; Kwadwo O; Tongoona PB; Oladejo O; Sneller C; Gedil M
    Sci Rep; 2021 Dec; 11(1):24193. PubMed ID: 34921181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide association analysis of grain yield and Striga hermonthica and S. asiatica resistance in tropical and sub-tropical maize populations.
    Dossa EN; Shimelis H; Shayanowako AIT
    BMC Plant Biol; 2024 Sep; 24(1):871. PubMed ID: 39294608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Limits on the reproducibility of marker associations with southern leaf blight resistance in the maize nested association mapping population.
    Bian Y; Yang Q; Balint-Kurti PJ; Wisser RJ; Holland JB
    BMC Genomics; 2014 Dec; 15(1):1068. PubMed ID: 25475173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide association study of Fusarium ear rot disease in the U.S.A. maize inbred line collection.
    Zila CT; Ogut F; Romay MC; Gardner CA; Buckler ES; Holland JB
    BMC Plant Biol; 2014 Dec; 14():372. PubMed ID: 25547028
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide association study of Striga resistance in early maturing white tropical maize inbred lines.
    Adewale SA; Badu-Apraku B; Akinwale RO; Paterne AA; Gedil M; Garcia-Oliveira AL
    BMC Plant Biol; 2020 May; 20(1):203. PubMed ID: 32393176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome wide association analysis of sorghum mini core lines regarding anthracnose, downy mildew, and head smut.
    Ahn E; Hu Z; Perumal R; Prom LK; Odvody G; Upadhyaya HD; Magill C
    PLoS One; 2019; 14(5):e0216671. PubMed ID: 31086384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome wide association mapping for heat tolerance in sub-tropical maize.
    Longmei N; Gill GK; Zaidi PH; Kumar R; Nair SK; Hindu V; Vinayan MT; Vikal Y
    BMC Genomics; 2021 Mar; 22(1):154. PubMed ID: 33663389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic dissection of resistance to gray leaf spot by genome-wide association study in a multi-parent maize population.
    Hu C; Kuang T; Shaw RK; Zhang Y; Fan J; Bi Y; Jiang F; Guo R; Fan X
    BMC Plant Biol; 2024 Jan; 24(1):10. PubMed ID: 38163896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide association mapping reveals genomic regions frequently associated with lettuce field resistance to downy mildew.
    Simko I; Peng H; Sthapit Kandel J; Zhao R
    Theor Appl Genet; 2022 Jun; 135(6):2009-2024. PubMed ID: 35419653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of genetic loci associated with rough dwarf disease resistance in maize by integrating GWAS and linkage mapping.
    Zhao M; Liu S; Pei Y; Jiang X; Jaqueth JS; Li B; Han J; Jeffers D; Wang J; Song X
    Plant Sci; 2022 Feb; 315():111100. PubMed ID: 35067294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simple sequence repeat markers useful for sorghum downy mildew (Peronosclerospora sorghi) and related species.
    Perumal R; Nimmakayala P; Erattaimuthu SR; No EG; Reddy UK; Prom LK; Odvody GN; Luster DG; Magill CW
    BMC Genet; 2008 Nov; 9():77. PubMed ID: 19040756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cloning of AFLP markers linked to resistance to Peronosclerospora sorghi in maize.
    Agrama HA; Houssin SF; Tarek MA
    Mol Genet Genomics; 2002 Aug; 267(6):814-9. PubMed ID: 12207229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and fine mapping of a major QTL (qRtsc8-1) conferring resistance to maize tar spot complex and validation of production markers in breeding lines.
    Ren J; Wu P; Huestis GM; Zhang A; Qu J; Liu Y; Zheng H; Alakonya AE; Dhliwayo T; Olsen M; San Vicente F; Prasanna BM; Chen J; Zhang X
    Theor Appl Genet; 2022 May; 135(5):1551-1563. PubMed ID: 35181836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide association study and molecular marker development for susceptibility to Gibberella ear rot in maize.
    Zhou G; Ma L; Zhao C; Xie F; Xu Y; Wang Q; Hao D; Gao X
    Theor Appl Genet; 2024 Sep; 137(10):222. PubMed ID: 39276212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide association study (GWAS) of resistance to head smut in maize.
    Wang M; Yan J; Zhao J; Song W; Zhang X; Xiao Y; Zheng Y
    Plant Sci; 2012 Nov; 196():125-31. PubMed ID: 23017907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-Wide Association Study on Resistance to Stalk Rot Diseases in Grain Sorghum.
    Adeyanju A; Little C; Yu J; Tesso T
    G3 (Bethesda); 2015 Apr; 5(6):1165-75. PubMed ID: 25882062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. You Had Me at "MAGIC"!: Four Barley MAGIC Populations Reveal Novel Resistance QTL for Powdery Mildew.
    Novakazi F; Krusell L; Jensen JD; Orabi J; Jahoor A; Bengtsson T; On Behalf Of The Ppp Barley Consortium
    Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33352820
    [No Abstract]   [Full Text] [Related]  

  • 38. The Identification of Two Head Smut Resistance-Related QTL in Maize by the Joint Approach of Linkage Mapping and Association Analysis.
    Li YX; Wu X; Jaqueth J; Zhang D; Cui D; Li C; Hu G; Dong H; Song YC; Shi YS; Wang T; Li B; Li Y
    PLoS One; 2015; 10(12):e0145549. PubMed ID: 26689370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-Wide Analysis of Tar Spot Complex Resistance in Maize Using Genotyping-by-Sequencing SNPs and Whole-Genome Prediction.
    Cao S; Loladze A; Yuan Y; Wu Y; Zhang A; Chen J; Huestis G; Cao J; Chaikam V; Olsen M; Prasanna BM; San Vicente F; Zhang X
    Plant Genome; 2017 Jul; 10(2):. PubMed ID: 28724072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm.
    Sitonik C; Suresh LM; Beyene Y; Olsen MS; Makumbi D; Oliver K; Das B; Bright JM; Mugo S; Crossa J; Tarekegne A; Prasanna BM; Gowda M
    Theor Appl Genet; 2019 Aug; 132(8):2381-2399. PubMed ID: 31098757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.