These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 29321723)

  • 1. Remodeling Functional Connectivity in Multiple Sclerosis: A Challenging Therapeutic Approach.
    Stampanoni Bassi M; Gilio L; Buttari F; Maffei P; Marfia GA; Restivo DA; Centonze D; Iezzi E
    Front Neurosci; 2017; 11():710. PubMed ID: 29321723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platelet-derived growth factor predicts prolonged relapse-free period in multiple sclerosis.
    Stampanoni Bassi M; Iezzi E; Marfia GA; Simonelli I; Musella A; Mandolesi G; Fresegna D; Pasqualetti P; Furlan R; Finardi A; Mataluni G; Landi D; Gilio L; Centonze D; Buttari F
    J Neuroinflammation; 2018 Apr; 15(1):108. PubMed ID: 29655371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Resilience to Damage in Multiple Sclerosis: Plasticity Meets Connectivity.
    Stampanoni Bassi M; Iezzi E; Pavone L; Mandolesi G; Musella A; Gentile A; Gilio L; Centonze D; Buttari F
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31878257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disability in multiple sclerosis: when synaptic long-term potentiation fails.
    Weiss S; Mori F; Rossi S; Centonze D
    Neurosci Biobehav Rev; 2014 Jun; 43():88-99. PubMed ID: 24726576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can pharmacological manipulation of LTP favor the effects of motor rehabilitation in multiple sclerosis?
    Stampanoni Bassi M; Leocani L; Comi G; Iezzi E; Centonze D
    Mult Scler; 2018 Jun; 24(7):902-907. PubMed ID: 28735565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interleukin-6 Disrupts Synaptic Plasticity and Impairs Tissue Damage Compensation in Multiple Sclerosis.
    Stampanoni Bassi M; Iezzi E; Mori F; Simonelli I; Gilio L; Buttari F; Sica F; De Paolis N; Mandolesi G; Musella A; De Vito F; Dolcetti E; Bruno A; Furlan R; Finardi A; Marfia GA; Centonze D; Rizzo FR
    Neurorehabil Neural Repair; 2019 Oct; 33(10):825-835. PubMed ID: 31431121
    [No Abstract]   [Full Text] [Related]  

  • 7. Neurophysiology of synaptic functioning in multiple sclerosis.
    Stampanoni Bassi M; Mori F; Buttari F; Marfia GA; Sancesario A; Centonze D; Iezzi E
    Clin Neurophysiol; 2017 Jul; 128(7):1148-1157. PubMed ID: 28511127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic plasticity and experimental autoimmune encephalomyelitis: implications for multiple sclerosis.
    Di Filippo M; de Iure A; Durante V; Gaetani L; Mancini A; Sarchielli P; Calabresi P
    Brain Res; 2015 Sep; 1621():205-13. PubMed ID: 25498984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic Plasticity Shapes Brain Connectivity: Implications for Network Topology.
    Stampanoni Bassi M; Iezzi E; Gilio L; Centonze D; Buttari F
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31817968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain mapping in multiple sclerosis: Lessons learned about the human brain.
    Filippi M; Preziosa P; Rocca MA
    Neuroimage; 2019 Apr; 190():32-45. PubMed ID: 28917696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity of the motor system in multiple sclerosis.
    Zeller D; Classen J
    Neuroscience; 2014 Dec; 283():222-30. PubMed ID: 24881573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural disconnection is responsible for increased functional connectivity in multiple sclerosis.
    Patel KR; Tobyne S; Porter D; Bireley JD; Smith V; Klawiter E
    Brain Struct Funct; 2018 Jun; 223(5):2519-2526. PubMed ID: 29453522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple brain networks support processing speed abilities of patients with multiple sclerosis.
    Manca R; Mitolo M; Stabile MR; Bevilacqua F; Sharrack B; Venneri A
    Postgrad Med; 2019 Sep; 131(7):523-532. PubMed ID: 31478421
    [No Abstract]   [Full Text] [Related]  

  • 14. Cortical plasticity predicts recovery from relapse in multiple sclerosis.
    Mori F; Kusayanagi H; Nicoletti CG; Weiss S; Marciani MG; Centonze D
    Mult Scler; 2014 Apr; 20(4):451-7. PubMed ID: 24263385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The therapeutic use of non-invasive brain stimulation in multiple sclerosis - a review.
    Iodice R; Manganelli F; Dubbioso R
    Restor Neurol Neurosci; 2017; 35(5):497-509. PubMed ID: 28984619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Invasive Brain Stimulation in Dementia: A Complex Network Story.
    Pini L; Manenti R; Cotelli M; Pizzini FB; Frisoni GB; Pievani M
    Neurodegener Dis; 2018; 18(5-6):281-301. PubMed ID: 30695786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graph Theoretical Framework of Brain Networks in Multiple Sclerosis: A Review of Concepts.
    Fleischer V; Radetz A; Ciolac D; Muthuraman M; Gonzalez-Escamilla G; Zipp F; Groppa S
    Neuroscience; 2019 Apr; 403():35-53. PubMed ID: 29101079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytokines and cytokine networks target neurons to modulate long-term potentiation.
    Prieto GA; Cotman CW
    Cytokine Growth Factor Rev; 2017 Apr; 34():27-33. PubMed ID: 28377062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Working memory performance of early MS patients correlates inversely with modularity increases in resting state functional connectivity networks.
    Gamboa OL; Tagliazucchi E; von Wegner F; Jurcoane A; Wahl M; Laufs H; Ziemann U
    Neuroimage; 2014 Jul; 94():385-395. PubMed ID: 24361662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue in Multiple Sclerosis: Neural Correlates and the Role of Non-Invasive Brain Stimulation.
    Chalah MA; Riachi N; Ahdab R; Créange A; Lefaucheur JP; Ayache SS
    Front Cell Neurosci; 2015; 9():460. PubMed ID: 26648845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.